
Chapter J LINEAR FUNCTIONS

You probably recall from calculus that a function is a rule which associates

particular values of one variable quantity to particular values of another

variable quantity. Analysis is that branch of mathematics devoted to the

study, or analysis, of functions. The main kind of analysis that goes on is

this: for small changes in the first variable, we try to determine an approxi
mate value to the corresponding change in the second. Now, we ask, for

large changes in the first variable to what extent can we predict, from such

approximations, the corresponding change in the second? The primary

technique involved in this kind of analysis is simplification of the problem.
That is, we replace the given function by a suitable very simple and more

easily calculable function and work with this simple function instead (making
sure to keep in mind the effect of that replacement).
The simplest possible functions are those which behave linearly. This

means that they have a straight line as graph. Such a function has the

following property. The increment in the value of the function correspond

ing to an increment in the variable is a constant multiple of that increment :

f(x + t)-f(x) = Ct (1.1)

for some C. Now, when one moves to the consideration of functions of

several variable quantities the study of even these simplest functions becomes

complex enough that it forms a special mathematical discipline, called linear

algebra. The calculus of one variable, coupled with the concepts and
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2 1. Linear Functions

techniques of linear algebra constitute the basic tools of analysis of functions

of several variables. It is our purpose in this text to study this subject.

First then, we must study the notions and methods of linear algebra.

We begin our study in a familiar context: that of the solution of a system

of simultaneous equations in more than one unknown. We shall develop
a standard technique for discovering solutions (if they exist), called row

reduction. This is the foundation pillar of the theory of linear algebra.
After a brief section on notational conventions, we look at the system of

equations from another point of view. Instead of seeking particular solu

tions of a system, we analyze the system itself. This leads us to consider the

fundamental concept of linear algebra: that of a linear transformation. In

this larger context we can resolve the question of existence of solutions and

effectively describe the totality of all solutions to a given linear problem.
We proceed then to analyze the totality of linear transformations as an

object of interest in itself. This chapter ends with the study of several

important topics allied with linear algebra. We study the plane as the system
of complex numbers and the inner and vector products in three space.

1.1 Simultaneous Equations

Let us begin by considering a well-known problem : that of finding solutions

to systems of simultaneous linear equations. The simplest nontrivial example
is that of two equations in two unknowns.

Examples

The technique for solution is that of elimination of one of the vari

ables. This is accomplished by multiplying the equations by appro

priate nonzero numbers and adding or subtracting the resulting

equations. This is quite legitimate, for the set of solutions of the

system will not be changed by any such operations. It is our intention

to select such operations so that we eventually obtain as equations:
x = something, y

= something. In the present case this is quite
easy: if we add five times the second equation to the first, y will

conveniently disappear:

8* + 5y = 3

35x -

5y = 40

43x ^43
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and we obtain the equation x = 1 . Substituting that in the first

equation gives 8 + 5y = 3, or y = 1. Then x = 1, y = 1 is the

solution. Let us try a few more illustrative examples.

2. 3x-2y= 9

-x + 3y = 11

We can eliminate x as follows: multiply the second equation by 3

and add :

3x-2y= 9

-3x + 9y = 33

7y = 42

We obtain v = 6 and x 7.

3. 3x + 4y= 1
n~

6x + 8y = 15
v ' '

If we subtract twice the first equation from the second, we obtain

a mess:

6x + Sy= 15
^ 4x

-6x-8y = 14

0= 1

Thus there can be no numbers x and y satisfying Equations (1.3),

because they imply the Equation (1.4) which is patently false. Notice,

if the second equation were

6x + Sy = 14

then our technique would lead to the equation 0 = 0 which is true,

but hardly offers much new information. We can conclude that our

simple technique of elimination does not always produce results.

We shall go into the causes for this in Section
1.3.

4. Let us now generalize our technique to systems involving more

variables. Consider, for example, the system

x + y + z = 5

3x-2y + 5z= -I (1.5)

2x + y
- z = 0
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The first equation expresses x in terms of y and z; if the second and

third equation were free of x we could solve as above for the two

unknowns y, z and then use the first to find x. But now it is easy to

replace those last two equations by another two which must also be

satisfied and which are free of the variable x. We use the first to

eliminate x from the latter two. Namely, subtract three times the

first from the second:

3x -

2y + 5z = - 1

3x + 3y + 3z = 15

- 5v + 2z= -16

and twice the first from the third :

2x + y z = 0

2x + 2y + 2z= 10

- y-3z = -10

The system (1.5) has been replaced by this new system:

x + y + z = 5

-5y + 2z=-16 (1.6)
-

y
- 3z = - 10

and we can now see our way clear to the end. We solve the last two

as a system in two unknowns :

-5y+ 2z= -16

5y+15z = 50

17z= 34~

z= 2

Then, substituting this value in the last equation, we obtain y 6 =

10 or y
= 4. Finally, substituting these values for y and z in the

first equation, we find x = - 1. Thus the solution is x = - 1, y = 4,
z = 2.

5. x y z = 5

2x + y
- 3z = 0

-4x-y+ z= 10
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Eliminate x from the second and third equations by adding appropriate
multiples of the first;

2x + y
- 3z = 0

2x-2y-2z= 10

3y -

z = - 10

-4x -

y + z = 10

4x -

4y - 4z = 20

-

5y - 3z = 30

The given system has been replaced by these equations :

xy z = 5

3y- z= -10

- 5y - 3z = 30

We solve the last two easily: y = -30/7, z = -20/7. Substitutions

into the first equation completes the solution: x = 15/7.

Of course, we can run into difficulties as we did in the two unknown

equations of Example 3. We should be prepared for such occurrences

and perhaps even more mysterious ones. Nevertheless, our technique is

productive : if there is a solution to be had we can locate it by this process

of successive eliminations. Furthermore, it easily generalizes to systems

with more unknowns. This is the technique stated for the case of n un

knowns. Eliminate the first variable from all the equations except the first

by adding appropriate multiples of the first. Then, we handle the resulting

equations as a system in n 1 unknowns. That is, using the second equation
we can eliminate the second variable from all but the second equation, using
the new third equation we can eliminate the third variable from the remain

ing equations, and so forth. Eventually we run out of equations and we

ought to be able to find the desired solution by a succession of substitutions.

We shall want to do more than discover solutions if they exist. We want

to be able to predict the existence of solutions ; we want to be able to compare

systems, and we want to know in some sense how many solutions there are.

In other words, we should come to understand the nature of a given system

of equations. In order to do that we have to analyze this technique and

develop a notation and theory which do so. That is where linear algebra

begins. Before going into this, we study another pair of more complicated

examples.
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Examples

6. x + 2y z 3w = 13

5x -

y
- z + 2w = - 14

y + z + w = 4

3x + 2y-2z = -7

According to our technique, we replace the last three equations by a

new set in which the variable x does not appear. We do this by

adding the suitable multiple of the first equation:

(-5) x (first) + second: -

lly + 4z + 17w = -79

0 x (first) + third : y + z + w = 4

(-3) x (first) + fourth: -

4y + z+ 9w = -46

Now we solve this set by applying the same procedure: we now

eliminate y. Of course the order of the equations is not relevant;
we could have listed them some other way. Since we can avoid

fractions by adding multiples of the second equation to the first and

third, let's do it that way.

(11) x (second) + first: 15z + 28w = -35

4 x (second) + third: 5z + 13w = -30

Finally, of this set, (-3) x (second) + first gives - live = 55. Thus

the original set of four equations is replaced by this set:

x + 2y z 3w = 13

y + z + w = 4

5z+ 13w= -30

-llw = 55

The solutions are now easily found,

w = 5 z = 7 y
= 2 x=l

7. Now, let us consider this set:

x + 2y + 3z + u- v = 2

-5x+ y + lz = -5

2y+ 4u + 3v = 18 t1,7)

3z u v = 5
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x is already eliminated from the last two equations. Using the first

to eliminate x from the second, we obtain these three equations in

place of the last three above,

1 \y + 22z + 5m - 5v = 5

2y+ 4u + 3v= 18 (1.8)
3z u v = 5

Now y is already eliminated from the last. We eliminate it from the

second (without getting involved with fractions) in this way :

(-2) x (first) + (11) x (second): -44z + 34u + 43y = 188

Now this equation together with the last of the set (1.8) gives this

system

-44z + 34u + 43v= 188

3z u v = 5

We can eliminate v from the first to obtain 129z 9u = 27. Thus

the system (1.7) has been transformed into this:

x + 2y + 3z + u v = 2

lly + 22z + 5w-5i> = 5

3z- u- v=
- 5

K '

\29z-9u =-27

Now we can solve for x by the first equation once we know y, z, u, v;

we can solve for y by the second once we know z, u, v; we can solve

for v in the third once we know z and u; and we can use any z, u which

make the last equation true. For example, if z = 0, we must have

u = 3, and so on up the line : v = 2, y = 0, x = 1 . Notice that for

any value of z we can always find u, v, x, y that make these equations

all hold. Thus in this case there is more than one solution.

Formulation of the Procedure: Row Reduction

Now, let us turn to the abstract formulation of this procedure. In the

general case we will have some, say m, equations in n unknowns. Let us

refer to the unknowns as x1, . . .

,
x". These m equations may be written as

a^x1 + a21x2 +
---

+ a1x" = b1

a^x1 + a22x2 + + an2x" = b2
(1 10)

aimxl + a2mx2 + + a,"*" =bn
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We proceed to solve this system as follows: multiply the first equation

by a2\a^ and add it to the second equation; multiply the first equation by

al3/a1
x
and add it to the third and so on. The result will be a new system,

which we may write this way:

a^x1 + a21x2 + + ajxr = b1

+ aV = p2<x2x +

tx2mx2 + + ocnmx" = P"

(1.11)

We now continue with the same technique applied to the system of m 1

equations in n
- 1 unknowns given by the system (1.11) (except for the first

equation). This is an effective reduction of the problem, because x1 can be

computed from the first equation once x2, ..., x" are known. Of course, if

a/ = 0, this technique must be slightly modified. We just renumber the

equations so that the coefficient of x1 in the first one is nonzero and then

proceed as above. If that is impossible then x1 appears in no equation so

we can disregard it and work with x2 instead.

We now introduce a formalism which allows us to keep track of this

procedure. It is clear that the essence of the left side of the system of

Equations (1.10) is embodied in the array of numbers.

/V 021

A =

a 2\

amJ

(1.12)

This array is called a matrix: the upper index of the general term is the
row index and the lower index is the column index. Thus, a53 is the number
in the third row and fifth column, a\2 is in the seventh row and forty-second
column, akJ is the number in the jth row and the kth column. Symbol
(1.12) is an m x n matrix: it has m rows and n columns. The matrix

b =

is an m x 1 matrix. Equations (1.10) can now be written symbolically as

Ax = b
(1.13)
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Now the technique for solving the equation described above consists of a

sequence of such equations with new matrices A and b, ending with one whose

solution is obvious. The step from one equation to the next is performed

by a row operation (remember, the rows are the separate equations) ; that is,

one of these particular steps :

Step 1 . Multiply a row by a nonzero constant.

Step 2. Add one row to another.

Step 3. Interchange two rows.

It is clear (and will be verified in Section 1.3) that any such operation does

not change the collection of solutions. Finally, the end result desired is a

matrix of this form, called a row-reduced matrix:

/l 2*

0 1

0 0

\ :

^

/

(1.14)

Descriptively : the first nonzero entry of any row is a 1 and this 1 in any

row is to the right of the 1 in any previous row. This is the kind of matrix

the above procedure leads to ; and it is most desirable because the system it

represents can be immediately solved. In order to see this, we shall distin

guish between two cases by resolving the dotted ambiguity in the lower right

corner of (1.14).

Let

Ax = b

be a system of linear equations where A is a row-reduced matrix (of the form

(1.14)). Let d be the number of nonzero rows of A.

Case 1 . d = n. In this case the system of equations has this form :

xl+a21x2 +--- + an1x = bl

x2 + a32x3 + + a2x = b2

x"-1 + cr-1xn = bn-1

xn = b"

0 = bn+1

0 = Z>'
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Thus there is a solution if and only if b"+l = = bm = 0, and the solution

is found by successive substitutions: In this case the solution is unique.

Case 2. d<n. In this case our system has the form :

xl + a^x2 ++ aV = b1

x2 + a3 2x3 + + a2x" = b2

xd + add+1 'xd+l--- + andxn = bd

0 = bd+1

0 = bm

(We may have to reindex the variables in order to get all the leading l's in a

line.) There is a solution if and only if bd+1 = = bm = 0, and all the

solutions are obtained by giving xd+1, ...,xn arbitrary values, and finding

the values of the remaining variables by substitutions.

We now summarize the factual (rather than the procedural) content of this

discussion in a theorem, the proof of which will appear in Section 1.3.

Definition 1. A matrix A is called a row-reduced matrix if

(i) the first nonzero entry in any row is 1,

(ii) in any row this first 1 appears to the right of the first 1 in any preceding
row.

The number of nonzero rows of A is called its index.

Theorem 1.1. Let A be an m x n matrix. A can be brought into row-

reduced form A' by a succession of row operations. The equation Ax = b has

precisely the same solutions as the equation A'x = b' ifV is obtained from b

by the same sequence of row operations that ledfrom A to A'.

EXERCISES

1 . Find solutions for these systems

(a) 2x -

3y = 23

3x+ y=-4

(b) hx + \y = 10

-fx+8y= 0

(c) x+ y+ z= 15

x- y+ z= 3

2x-3y-5z = -7
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(d) x+ y+ z+ w = 4

x+ y+ z w=2

x y+ z h>=0

-x + 2y-3z + 4w = 2

(e) -x+ y+ z= 0

2x + 2y+10z = 28

x+ y+ z = 22

(f ) 3x + 6y + 9z = 12

x + 2y + 3z= 4

(g) x+ y
= 7

x y
= \

3x 4y = 0

(h) x+ y
= 7

x + 2y = 9

x+3y =11

(i) jc + y + z+v = 4

x + y z w = 6

(j) x + 2y+ z= 0

x 3y 6z = 4

4x+8y + 4z = ll

2. A homogeneous system of linear equations is a system of the form

Ax = 0; that is, the right-hand side is zero. Find nonzero solutions (if

possible) to these homogeneous systems.

(a) x+ y + z = 0

X- y + z = 0

x + 2y + z = 0

(b) x+y + z = 0

x y z = 0

(c) x+ y+ z+ w =0

x 2y + z 2w=0

2x y +2z w=0

3. Suppose (x1, ..., x") is a solution for a given homogeneous system.

Show that for every real number /, (tx1, ..., tx") is also a solution.

4. If (x\ . . .
, x"), (y1, ...,y) are solutions for a given homogeneous

system, then so is (xl + y1, . . .
,
x" + y).

5. Find the row-reduced matrix which corresponds to the given matrix

according to Theorem 1.1.

/ 0 7 1\

A= 3 2 2

\-l 6 4/
'l 0 0 6 5^

2 3 0 0 0

1 0-1-1 1

i0 0 0 2 0y

B =
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(1
2 6 1\

-2 -4 0 2

0 0 8 8 I

3 6 9 12/
6. Let

i) ^ i)
Solve these equations:

(a) Ax=b, (b) Bx=a, (c) Bx = c, (d) Cx = a,

(e) Cx = c, where A, B, C are given in Exercise 5.

PROBLEMS

1. Show that the system

ax + by = a

cx + dy = fi

has a solution no matter what a, jS are ifadbc^ 0, and there is only one

such solution.

2. Can you suggest an explanation of the ugly phenomenon illustrated

by Example 3 ?

3. Is there only one row-reduced matrix to which a given matrix may be

reduced by row operations? If A' and A" are two such row-reduced

matrices, coming from a given matrix A show that they must have the same

index.

4. Suppose we have a system of n equations in n unknowns, Ax = b.

After row reduction the index of the row-reduced matrix is also n. Show

that in this case the equation Ax = b always has one and only one solution

for every b.

5. Suppose that you have a system of m equations in n unknowns to

solve. What should you expect in the way of existence and uniqueness
of solutions in the cases m<n,m>nl

6. Suppose we are given the n x n system Ax = b, and all the rows of A

are multiples of the first row; that is, there are s1, . . .
,
s" such that a/ = s'af

for all j and i = 1, . . .

, n. Under what conditions will the given system
have a solution ?

7. Suppose instead that the columns ofA aremultiples of the first column.
Can you make any assertions?

8. Verify that if the columns of a 3 x 3 matrix are multiples of the first

column, then the rows are multiples of one of the rows.
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1.2 Numbers, Notation, and Geometry

We now interrupt our discussion of simultaneous equations in order to

introduce certain facts and notational conventions which shall be in use

throughout this text. We shall also describe the geometry of the plane from

the linear, or vector point of view as an alternative introduction to linear

algebra.
First of all, the collection {1, 2, 3, . . .} of positive integers (the "counting

numbers ") will be denoted by P. Every integer n has an immediate successor,

denoted by n + 1 . If a fact is true for the integer 1 and also holds for the

successor of every integer for which it is true, then it is true for all integers.

This is the Principle of Mathematical Induction, which we shall take as an

axiom, or defining property of the integers. We shall formulate it this way.

Principle of Mathematical Induction. Let S be a subset of P with these

properties:

(i) 1 is a member of S,

(ii) whenever a particular integer n is in S, so also is its successor n + 1

inS.

Then S must be the set P of all positive integers.

This assertion is intuitively clear. You can see, for example that 2 is in 5.

For by (i) 1 is in S, and thus by (ii) 1 + 1 = 2 is also in 5. Continuing,

3 = 2+1 is in S, again by (ii). By applying (ii) another time 4 is in S.

Applying (ii) another 32 times we see that all the integers up to 36 are also

in S. No positive integer can escape : since 1 is in 5" we need only apply (ii) n

times to verify that the integer n is in S. In fact, the assertion of the principle

ofmathematical induction is that there are no integers other than those that

can be captured in this way, and in this sense the principle is a defining

property of the integers.

The principle ofmathematical induction provides us with a tool for writing

proofs of assertions for all positive integers which avoids the phrases:
"

continuing in this way,"
"

and so forth," "...,".... We shall find this a

helpful device in verifying assertions concerning problems with
an unspecified

number, n, of unknowns. Let us illustrate this method by proving a few

propositions about integers.
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Proposition 1. The sum of the first n integers is (l/2)( + 1).

Proof. Let S be the set of integers for which Proposition 1 is true. Certainly
1 is in S:

1=*- 1(1 + 1)

Now, assuming the assertion of Proposition 1 for any integer n, we show that it also

holds for n + 1 .

l +
---

+ 7j+l=l +
---

+ M ++l= in(n + 1) + n + 1

= (n+ l)(in + 1) =K + \)(n + 2)

which is the appropriate conclusion. Thus by the principle of mathematical in

duction, Proposition 1 is proven.

Proposition 2. The sum of thefirst n odd integers is n2.

Proof. 1 = l2 surely. We now assume the proposition for any n, and show that

it follows for n + 1 :

1 + 3 + + 2(n + 1) - 1 = 1 + 3 + + 2n - 1 + In + 1

= n2 + 2n+l=(n+l)2

Proposition 3. Let K be a given positive integer. Then for any integer n
we can write

n=QK+R (U5)

with 0 < R < K in one and only one way.

Proof. We may of course immediately discard the case K = 1 for in that case

(1 . 1 5) is just the trivial comment that n = n 1 for all n. Thus take K> 1
, and now

proceed by mathematical induction. The proposition is true for n = 1 :

\=0K+\

Now we assume that the proposition is true for any given integer n. Thus

n = QK+R

for some Q and R,0^R<K. ThcnR+l^K. If R + 1< K, we have

n + 1 = QK+ (R + 1)
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with 0 < R + 1 < K, as desired. Otherwise, R + 1 = K, in which case

n+l = QK+K = (Q+ \)K+ 0

as desired. Thus, by mathematical induction, (1.15) is possible for every integer n.
This representation is unique, for if

n = Q'K+R'

is also possible with 0 <, R' < K, then we have

Q'K+R' = QK+R

or

(Q'-Q)K =R-R'

and R R' is betweenK and K. Now the only multiple of K between K and

K is 0, so (Q! - Q)K =R-R'=0 from which we conclude R = R', Q = Q.

Set Notation

The set of positive integers forms a subset of a larger number system, the

set Z of all integers. Z consists of all positive integers, their negatives and 0.

The collection of all quotients of members of Z is the set of rational numbers,

denotedy by Q. Q is a very large subset of the set of all real numbers R.

For the purposes of geometric interpretation we will conceive of the real

number system R as being in one-to-one correspondence with the points
on a straight line. That is, given a straight fine, we fix two points on it,

one is the origin O, and the other denotes the unit of measurement. All

other points P on the line are given a numerical value : it is the displacement

from O as measured on the given scale (negative if O is between P and 1

and positive otherwise). (See Figure 1.1.)

There are certain ideas and notations in connection with sets which we

Figure 1.1
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shall standardize before proceeding. Customarily, in any given context

there is one largest set of objects under consideration, called the universe

(it may be the positive integers P, or the rabbits in Texas, or the people on

the moon) and all sets are actually subsets of this universe. IfX is a set and

x is an object we shall write xelto mean : x is a member of X. x$X

means that x is not a member of X. Thus, for example,
- 7 e Z, but -7 $P.

The set with no elements is called the empty set, and is designated 0. Most

specific sets are defined by a property : the set in question is the set of all

elements of the universe that have that property. We use the following short

hand form to represent that phrase

{xeU: x has that property}

For example, the set of all positive real numbers is {x e R: x > 0}. The set

of all Englishmen who drink coffee is {x e England: x drinks coffee}. The

set of all integers between 8 and 18 is {x e Z: 8 < x < 18}. This is the same

as {xeP: 8 <x< 18} and {xeZ: \x
- 13 1 < 5}.

If X and Y are two sets, and every element ofX is an element of Ywe shall

say that X is contained in Y, written X <= Y. Notice that 0 c X for every

set X. We shall consider also these operations on sets :

X: the set of all x not in X

X u Y: the set of all x in either X or Y (or both)
X n Y: the set of all x in both X and Y

X Y: the set of all x in X, and not in Y

(Consult Figure 1.2 for a pictorial interpretation.) Notice that X - Y is

the same as Xn-Y. There are many other identities: X = X,
-X u - Y = -(X n Y), X n (Y u Z) = (X n Y) u (X n Z), and so on,

so don't be surprised when two different collections of symbols identify the

same set. A final operation is that of forming the Cartesian product. If U

is a given universe, then U x U is the set of all ordered pairs of elements in U.

U x U is often denoted by U2. By extension we can define U3 as the set of

all ordered triples (x1, x2, x3) of elements of U; and more generally U" is the

set of all ordered -tuples of elements of U.

If X1, ... ,
X" are subsets of U, the set of all ordered n-tuples (x1, ...,x")

with x1 e X1, . . .

, xn e Xn is denoted X1 x x X". Not every subset of
V is of the form X1 x--- xX", those which are of this form are called

rectangles.
Thus the space of n-tuples of real numbers is denoted R". If I1, ..., I"

are intervals in R, then I1 x--- xl" is indeed a rectangle. A point
(x ,

. . .

, x") in R" will be denoted, when specific reference to its elements is
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^^^
X U Y

not required, by a single boldfaced letter x = (xl, ..., x"). Ifa = (a1, ... , a"),
b = (ft1, . . .

, b") are two points in R" with b' > a', I <i<n we shall use the

notation [a, b] to denote the rectangle.

{(x1, . . .

, x"): a1 < x1 < b\ . . .
,
a" < xh < b"}

If the inequalities are strict we shall denote the rectangle by (a, b) :

(a, b) = {(x\ . . .
, x"): a1 < x1 < b1, . . .

,
a" < x" < b"}

A function from a set X to another set Y is a rule which associates to each

point of x a uniquely determined point y in Y. It is customary to avoid the

use of the new word rule by defining a function as a certain kind of subset

of X x Y. Namely, a function is a set of ordered pairs (x, y) with xe X,

y e 7, with each x e X appearing precisely once as a first member. If

(x, y) is such a pair we denote y by f(x) : y =f(x). We shall use the notation

/: X - Y to indicate that /is to mean a function from X to Y. X is called

the domain of/; the range of/is the set {f(x): x e X} of values off. If every

point ofy appears as a value offwe say that/maps X onto Y. If every point
ofy is the value offat at most one x in X, we say that/is one-to-one. More

precisely,/is one-to-one if x # x' implies /(x) #/(x')- Now, if/is a one-to-

one function from X onto Y, then for each y e 7, there is one and only one

xeX such that/(x) =y. This defines a function #: Y-+X which is also

one-to-one and onto and has this property: g(y) = x if and only \ff(x) = y.

In this case we shall say that / is invertible and g is its inverse, denoted
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g=f~l. Finally, iffx : X -> Y, f2 : Y-^Zare two functions, we can compose

them to form a third function, denoted /2 of^.X^Z defined by

fi /iW =/2(/i(*))

Plane Geometry

We now turn to the geometric study of the plane, as an alternative intro

duction to linear algebra. According to the notion of the Cartesian co

ordinate system we can make a correspondence between a plane, supposed

to be of infinite extent in all directions, and the collection R2 of ordered

pairs of real numbers. This is done in the following way: first a point on the

plane is chosen, to be called the origin and denoted O (Figure 1.3). Then

two distinct lines intersecting at O are drawn (it is ordinarily supposed that

these lines are perpendicular, but it is hardly necessary). These lines are

called the coordinate axes; they are sometimes referred to more specifically
as the x and y axes, ordered counterclockwise (Figure 1.4). Now a point
is chosen on each of these axes; we call these Et and E2 (Figure 1.5). These

are the "unit lengths" in each of the directions of the coordinate axes.

Having chosen a unit on these lines, we can put each of them in one-to-one

correspondence with the real numbers. Now, letting P be any point in the

plane, we associate a pair of real numbers to P in this way. Draw the lines

through P which are parallel to the coordinate axes and let x be the inter

section with the line through EL and y the intersection with the line through

o

Figure 1.3

Figure 1.4
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Figure 1.5

E2 . Then we identify P with the pair of real numbers (x, y) (Figure 1.6.)

In this way to every point in the plane there corresponds a point in R2

(called its coordinates relative to the choice O, Elt E2). Clearly, for any pair
of real numbers (x, y) we have a point with those coordinates, namely the

fourth vertex of the parallelogram of side lengths x and y along the co

ordinates axes with one vertex at O (Figure 1.6).

P(x.y)

Figure 1.6
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Figure 1.7

Once a particular point in the plane is fixed as the origin, there can be

defined two operations on the points of the plane, and these operations form

the tools of linear algebra. Since they cannot be defined on the points until

an origin is chosen, we are forced to distinguish between the point set the

plane and the plane with chosen point. This distinction gives rise to the

notion of vector : a vector is a point in the plane-with-origin. The vector

can be physically realized as the directed line segment from the origin to the

given point; such a visualization is nothing more than a heuristic aid. It is

important to realize that as sets, the set of vectors in the plane is the same

as the set of points in the plane. The difference is that the set of vectors has

additional structure : a particular point has been designated the origin. We

shall denote vectors by boldface letters; thus the point P becomes the vector

P, the origin O becomes the vector 0. We shall now describe these two

operations geometrically and then compute them in coordinates.

1. Scalar Multiplication. Let P be a vector in the plane, and r a real

number. Consider the line through 0 and P. Considering P now as a unit

length, we can put that line into one-to-one correspondence with R. Using
this scale, rP is the point corresponding to the real number r. Said differently,
rP is one of the points on that line whose distance from 0 is \r\ times the

distance of P from 0 (Figure 1.7). Now, if P has the coordinates (x, y) we

shall see that rP has coordinates (rx, ry). First, suppose r > 0. Draw the



1.2 Numbers, Notation, and Geometry 21

triangle formed by the fine through 0, P and rP, and the E^ axis and the lines

parallel to the E2 axis (Figure 1.8). Triangles I and II are similar. Thus,

referring to the lengths as denoted in Figure 1.8,

Jpl = i
|rP| s

By definition |P|/|rP| = l/r, thus the first coordinate of rP (here denoted by s),

is rx. The second coordinate is similarly seen to be ry. Thus rP has the

coordinates (rx, ry). The case r < 0 is only slightly more complicated.
2. Addition. Let P, Q be vectors in R2. Then 0, P, Q are three vertices

of a uniquely determined parallelogram. We define P + Q to be the fourth

vertex. The description of this operation in terms of coordinates is extremely

simple: if P has coordinates (x, y), and Q has coordinates (s, t), then P + Q

has (x + s, y + t) as coordinates. There is nothing profound to be learned

from the verification of this fact, so we shall not go through it in detail.

After all, it is not our purpose here to logically incorporate plane geometry

Figure 1.8
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Figure 1.9

into our mathematics, but rather to use it as an intuitive tool for comprehen
sion. For those who are suspicious of our assurances we include the verifica

tion of a special case. Consider Figure 1.9 and include the data relating
to the coordinates (Figure 1.10): To show that the length of the line segment
OB is s + x, we must verify that the length of AB is s. Draw the line through
P and parallel to OE^ and let C be the intersection of that line with the line

through P + Q and B. The quadrilateral ABCP has parallel sides and thus

is a parallelogram. Hence, AB and PC have the same length. Now triangles

O^Q and PC(P + Q) have pairwise parallel sides (as shown in Figure 1.10)
and further 0Q and P(P + Q) have the same length. Thus these triangles
are congruent so the length of PC is the same as the length of 0s, namely s.

Thus the length of AB is also s, and so OB has length s + x. Notice that this

is a special case since it refers to an explicit picture which does not cover all

possibilities.
The operation inverse to addition is subtraction : P - Q is that vector

which must be added to Q in order to obtain P (Figure 1.11). The best way
to visualize P -

Q is as the directed line segment running from the head of

Q to the head of P (denoted L in Figure 1.11). In actuality, P -

Q is the

vector obtained by translating L to the origin; in practice, it is customary not
to do this but to systematically confuse a vector with any of its translates.

We shall do this only for purposes of pictorial representation.
Notice that, having chosen the vectors E1 and E2 ,

we can express any
vector in the plane uniquely in terms of them and the operations of addition
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P + Q

Figure 1.11
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and scalar multiplication:

(x, y) = (x, 0) + (0, y) = x(l, 0) + y(0, 1) = xEt + yE2

This is true no matter how Ex and E2 are chosen, so long as the points

0, Ej, E2 do not lie on the same line (we say the vectors E1 and E2 are not

collinear). Thus we have this important fact.

Proposition 4. Let EY and E2 be any two noncollinear vectors in the plane.

Then we can write any vector Q uniquely as

Q = *% + x2E2

x1 and x2 are the coordinates of Q relative to the choice of origin 0 and the

vectors Et and E2 .

If we state this geometric fact purely as a fact about R2, it turns out to be

a theoretical assertion about the solvability of a pair of linear equations.

Thus, let us suppose Ex = (ax1, a,2), E2 = (a2x, a2) relative to some standard

coordinate system (for example, the usual rectangular coordinates). First

of all, how do we express algebraically the assertion that Et and E2 do not

lie on the same line? We need an algebraic description of a straight line

through the origin.

Proposition 5.

(i) A set L is a straight line through 0 if and only if there exists (a, b) e R2

such that

L = {(x, y) : ax + by = 0}

(ii) The points (x, y), (x', y') lie on the same line through the origin if and

only if

- = L
x' y'

You certainly recall these facts from analytic geometry we leave the

verification to the exercises. Returning to the vectors Ex and E2, these

geometric facts become the following algebraic fact.

Proposition 6. Let

la,1 aA

be a 2 x 2 matrix with nonzero columns.
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(i) Ifat *a22 - a2a2 0, then the equation Ax = b has a unique solution

for every be R2.

(ii) The equation Ax = 0 has a nonzero solution if and only if a1a2 =

afa1.
(iii) If a^a2 = a2a2 ,

the equation Ax = b has a solution if and only

ifal1b2 = al2b1.

Proof.

(i) This condition is according to Proposition 5 (ii) precisely the assertion that

the vectors (ai\ ai2), (a2l, a22) are not collinear. Then, according to Proposition 4,

for any (b1, b2) there is a unique pair (x1, x2) such that

(b\ b2) = x'iai1, a,2) + x2(a2\ a22)

This is the same as the pair of equations b = Ax.

(ii) By the above, if aila22 = ai2a2, then the only solution of Ax = 0 is x = 0.

On the other hand, if a?a22 =ai2a2\ then either (a22, ai2) or(a2\ a22) is a non

zero solution of Ax = 0, or all the entries of A are zero, in which case everything

solves Ax = 0.

(iii) If a,la22 =ai2o21, then (a/, ai2), (a2l, a22) lie on the same line through the

origin by Proposition 5(ii). Any combination x1(a1\ ai2) + x2(a2\ a22) willhaveto

lie on that line, and conversely, any point on that line must be such a combination.

Thus Ax = b has a solution if and only if (b\ b2) lies on the line through 0 deter

mined by (at\ at2). The equation for this is, by Proposition 5(ii),

h1 h2
_=f_ or bW=b1a12
a,1 a,2

Examples

8. Let Lx be the line through (0, 0) and (3, 2) and L2 the line

through (1, 1) and (0, 6). Find the point of intersection of Lv and L2 .

Lt has the equation 2x - 3y = 0, and L2 the equation 5x + y
= 6.

The point of intersection must lie on both lines, and thus is the pair

(x, y) solving

2x - 3y = 0

5x+ y
= 6

We find x = 18/17, y = 12/17.

9. Find the line L through the point (7, 3) that is parallel to the

line L': 8x + 2y = 17. L will be given by an equation of the form
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ax + by = c. In order to be parallel to L', L and L' must have no

point of intersection, so the equations

8x + 2y= 17

ax + by = c

can have no common solution. Thus we must have

8_2
a~b

Furthermore, since (7, 3) is on L, we must also have

la + 3b = c

This pair of equations in three unknowns has for a solution a = 4,
6 = 1, c = 31. Thus Z, is given by the equation

4x + y
= 31

? EXERCISES

7. Show that for every integer n,

l2 + 22 + + n2 = in(n + 1)(2 + 1)

8. Show that for every integer n,

2 + 22+--- + 2" = 2"+1-2

9. Show that Xn(YvZ) = (Xn Y)u(XnZ) and Xu(YnZ) =

(XuY)n(XvZ).
10. Give an example of a subset of a Cartesian product which is not a

rectangle.

1 1 . Find the point of intersection of these pairs of lines in R2 :

(a) 3x+ y
= l (c) 2x+ 2y=-l

x~\ly = \ at+ 12^ = 14

(b) x-2y = 4 (d) y=2x+ 1

2x+ y
= 0 jc = 3y + 18

12. Find the line through P which is parallel to L-

(a) P = (2, -l),Z.:3* + 7y = 4

(b) P = (8, \),L:x-y = -\
(c) V = (0,-l),L:y-2x = 3

PROBLEMS

9. We can define the line through P and Q as the set of all X such that
the vector X - P is parallel to the vector P -

Q. Show that two vectors are
parallel if and only if one is a multiple of the other. Conclude that the line
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through P and Q is the set

{P + t(P~Q):teR}

10. Using the definition in Exercise 9 show that a straight line in the plane
is, in terms of coordinates, given as

{(x,y)eR2:ax + by + c = 0}

for suitable a, b, c.

1 1 . Suppose Z, is a line given by the equation bx + ay + c = 0

(a) Show that the tangent of the angle this line makes with the

horizontal is b/a.

(b) Show that the vector (a, b) is perpendicular to L.

(c) Find the point on L which is closest to the origin.
12. Find the line through the point P and perpendicular to L:

(a) P = (3, l),L:x-3y = 2.

(b) P = (-l, l),Z.:2x + 3y = 0.

(c) P=(0, 2),L:5x = 2y.
13. Suppose coordinates have been chosen in the plane. Let Ei , E2 be

two vectors in the plane which are not collinear. (That is, 0, Ei, E2 do not

lie on a straight line.) Then we can recoordinatize the plane relative to this

choice of principal directions. Give formulas which relate these two

coordinatizations in terms of the given coordinates ofEi , E2 (see Figure 1.12).

/
<E, (x* y )

vE.

/

/
/

r

^-'
"~

/

uE,

p Uj)

(u.v)

E.U'.y1)

Figure 1.12
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14. In the text, the equation 1 + 2 -\ h n = $n(n + 1) was verified by

induction. There is another way of doing this. An n x n matrix has n2

entries. There are n of these entries on the diagonal and 1+2+ \-n 1

entries both above and below that diagonal. Thus

2(1 + 2 + + n
- 1) + n = n2

1.3 Linear Transformations

We now return to the problem of analyzing systems of simultaneous linear

equations, with a broader question in mind: given the m xn matrix A, for

which b is there a solution of the equation Ax = b? In order to study this,

we associate to A the function from Rm to R":

fA(x\ ...,*") = (V*1 + + a^x", ..., a,mx\ ..., anmx") (1.16)

Thus the set of b, such that Ax = b, is precisely the range offA .

Let us begin by introducing the two fundamental operations on R" (just as

in the case n = 2 studied in the previous section) :

1. Scalar Multiplication: for r e R, x = (x1, . . .
, x") e R", define

rx = (rx1, ..., rx")

2. Addition: for x = (x1, . . .

, xT), y = (y1, . . .
, y") e R", define

x + y^x1 +y1,...,xn + y")

Definition 2. A function / from R" to Rm is a linear transformation if it

preserves these two operations, that is, if

/(rx) = rf(x)

/(x + y) =/(*) +/(y)

The function fA defined above for the m x n matrix A is linear:

fA(rx) = (a, 'rx1 + + a1", . . .

, afrx1 + + a^rx")
= (rfa1*1 + anV), . . .

, rfa"*1 + + anmxn))
= rfA(x)
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/*( + y) = (xl + y1) + + an\xr + y"), . . .

, a^x1 + yl)
+ +<*."(* + /))

= (a11a:1 + ---+aV + a11y1 + ...+,,//,...,
a^x1 + + a"V + ^V + + anmy")

= //.*) + /,(y)

The significance of the introduction of linear transformations, from the

point of view of systems of equations, is that it provides a context in which to

consistently interpret the technique of row reduction. For, the application
of a row operation to a system of equations amounts to composition of the

associated linear transformation with a particular linear transformation

corresponding to the row operation. Once we have seen that we can analyze
the given system by studying these successive compositions. Looking ahead,
it is even more important to recognize row reduction as a tool for analyzing
linear transformations. Let us now interpret the row operations as linear

transformations.

Type I. Multiply a row by a nonzero constant. Consider the multiplication
of the rth row by c # 0. Let Pt be the transformation on Rm :

Pl(b1,...,bm) = (bl,...,cbr,...,bm)

(multiplication of the rth entry by c). The effect of this row operation is that

of composing the transformation/,: R" -> Rm with Pu and changing the

equation Ax = b into the equation PtAx = Pib. These two equations have

the same set of solutions since the transformation Px can be reversed (it is

invertible). Precisely, its inverse is given by multiplying the rth entry by 1/c.

Type II. Add one row to another. Adding the rth row to the 5th row

corresponds to this transformation on Rm :

P2(b\ . . .

, bT) = (by ,
. . .

, V, . . .

,
b* + b', . . .

, bm)

Again, this step in the solution of the equations amounts to transforming the

equation Ax = b to P2Ax = P2b. Since P2 is invertible (what is its inverse?)

we cannot have affected the solutions.

Type III. Interchange two rows. Interchanging the rth and sth rows

corresponds to the transformation

P3(b1,...,br,...,P,...,m = (bl,...,V,...,br,...,bm)

The importance of these observations is this : the row operations correspond

to linear transformations which in turn are representable by matrices. The
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solution of the system of equations Ax = b thus can be accomplished com

pletely in terms ofmanipulations with the matrix corresponding to the system.

It is our purpose now to study the representation of linear transformations

by matrices and the representation of composition of transformations.

In Rn the n vectors (1,0,..., 0), (0, 1, 0, . . .

, 0), . . .

, (0, . . .

, 0, 1) play a

fundamental role. We shall refer to them as E] ,
. . .

, E , respectively.
Thus Ef has all entries zero, but the rth, which is 1 .

Proposition 7. Any vector in R" has a unique representation as a linear

combination ofEu ...,En.

Proof. Obviously,

(b1 b")=*! + +b'E

We shall refer to the set of vectors Ei, . . .
, E as the standard basis for R". Out

of Proposition 7 comes this more illuminating fact.

Proposition 8. Corresponding to any linear transformation L: R" -> Rm

there is a unique m xn matrix (a/) such that

L(x' x") = ( a/xi, ..., a/v) (1 .17)
V/=l j=l I

Proof. It is clear, by the way, that, given the matrix (a,1), Equation (1.17) does
define a linear transformation. Now, given L, since it is linear, we can write

L((x\ ...,x")) =L(x1E1 + + xE) = x'KEO++ x?L(En) (1.18)

Thus a linear transformation is completely determined by what it does to the
standard basis. Let

(E,) = (at\ ..., fll-), . . .
, Z,(E) = (an\ ..., a)

Then Equation (1.18) becomes

L((x\ ...,x"))=x\ai\ .... ai")++ x"(al am)
= (xW, ..., x1*,"1) + + (x"a\ ..., x"am)
= (xW + ---

+ x"a\..., x'ar+ + x-V)

which is just Equation (1.17).
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Matrix Multiplication

Now we must discover how to represent the composition of two linear

transformations by an operation on matrices. There is only one way to

make this discovery: compute. Suppose then that T: R" -> Rm and S:

Rm ->RP are linear transformations represented by the matrices (a/) and

(b/), respectively. Then, we can compute the composition ST as follows:

T(x1,...,xn)=(tcij1xj,..., 2>/v)
V/=i j

= i /

ST(x\ ...,x") = (Jx(,f>,V)> - *>*'(,f>;V))
= (]tl(jty*j)*i i(iy^

Thus ST is represented by the p x n matrix

(jtw) (U9>

Definition 3. Let A = (a/) be an m x n matrix and B = (bf) a p x m

matrix. Then the product BA is defined as the p x n matrix whose (i,j)th

entry is given by (1 . 19).

The preceding discussion thus provides the verification of

Proposition 9. If T: R" -> Rm, S: Rm -? R" are represented by the matrices

A, B, respectively, then ST is represented by the product BA.

The product operation may seem a bit obscure at first sight; but it is easily

described in this way: the (i,j)th entry of BA is found by multiplying entry

by entry the rth row ofB to they'th column ofA, and adding.

Examples

10. /5 3 7\ / 6 1 0\

A= 6 5 1 B= -3 2 5

\8 11 -4/ \ 4 4 4/
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LetAB = (c/). Then

c11 = 5.6+ 3(-3)+ 7.4 = 49

Cl2 = 6.6+ 5(-3)+ 1.4 = 25

Cl3 = 8.6+ll(-3) + (-4)4=-l

cj2 = 6.0 + 5.5 + 1.4 = 29

/ 49 39

'

43\

AB = 25 20 29

\-l 14 39/

(2 5 1) 0 =(-l-2 + 0-5 + l-l) = (-l)

11.

( 0)(2 5 l)=[2-0 5-0 1 - 01

\ 1/ \2 1 5 1 1 1/

12. /-I 0\/ 1 7 0\_/-l -7 0\

\ 0 lj\-l 4 -2) \-\ 4 -2/

(0 1\( 17 0\/-l 4 -2\

[l 0J\-1 4-2/^17 Of

(I 1\( 1 7 0\ / 0 11 -2\

[0 iA 1 4 -v l-i 4 -2)

Now, let us recapitulate the discussion of this section so far. The problem
of systems of m linear equations in n unknowns amounts to describing the

range of a linear transformation T: R" -* Rm. The technique of row reduc

tion corresponds to composing Tby a succession of invertible transformations

on Rm. These transformations are those which provide the row operations;
we shall call them elementary transformations. Linear transformations can

be represented by means of the standard basis by matrices, and composition
of the transformations corresponds to matrix multiplication. Thus, we

solve a system of linear equations as follows: Multiply the matrix on the left

by a succession of elementary matrices in order to obtain a row-reduced

matrix. Then we can easily read off the solutions. Since multiplication
by an elementary matrix is the same as applying the corresponding row

operation to the matrix it is easy to keep track of this process.
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Examples

1 3. Let us consider the system of four equations in three unknowns

corresponding to the matrix

A =

We shall record the process of row reduction in two columns. In

the first we shall list the succession of transformations which A under

goes and in the second we shall accumulate the products of the

corresponding elementary matrices.

(a) Multiply the third row by 1 and interchange it with the

first,

>\ 0 -1\ /0 0 -1 0^

3 2 2 1/0 1 0 0

4 0 1 II 1 0 0 0

\0 1 2/ \0 0 0 ly

(b) Multiply the first row by 3 and subtract it from the second;

multiply the first row by 4 and subtract it from the third.

'I 0 -1\ /0 0 -1 0\
0 2 5 \ / 0 1 3 0

0 0 5 II 1 0 4 0

V0 1 2/ \0 0 0 1,

(c) Divide the second row by 2 and the third row by 5.

1 0 -1\ / 0 -1 0'

0 1 5/2 1 o 1/2 3/2 0

0 0 1 1/5 0 4/5 0

0 1 2/ \o 0 0 1

(d) Subtract the second row from and add one-half the third

row to the fourth.

1 0 -1\ / 0 -1 0'

0 1 5/2 \ 1 1/2 3/2 0

0 0 1 1/5 0 4/5 0

0 0 0/ \1/10 -1/2 -11/10 1,
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Let us denote the product of the elementary matrices by P; thus P
is the last matrix on the right and the matrix on the left is PA. Now,
it is easy to see that if PAx = y has a solution, the fourth entry of y

must be zero. Now our original problem

Ax = b

has a solution if and only ifPAx = Pb is solvable (since P is invertible).
Thus b is in the range ofA if and only if the fourth entry of Pb is zero :

Ax = b can be solved if and only if

A*1-i*2-A*3 + 6* = o

If b satisfies that condition, there is an x such that Ax = b; we find

it by solving PAx = Pb:

x1-x3= -b3

x2 + \x3 = \b2 + \b3
x3 = ib1 + fb3

14. Consider now the system in three unknowns given by

We row reduce as above.

(a) Multiply row 1 by 4 and subtract it from row 2; multiply
row 1 by 3 and subtract it from row 3.

'1 3 ~2\,/ 1 0 0"

0 -10 6 -4 10

,o -5 3/1 -3 0 1,

(b) Subtract 1/2 of row 2 from row 3 ; divide row 2 by - 10

/I 3 -2 \ / 1 0 0\
0 1 -3/5 2/5 -1/10 0

\0 0 0/\-l 1/2 1/

The system Ax = b thus has a solution if and only if

-b1 + 2-b2 + b3 = 0
(120)
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In that case the solution is given by

x1 + 3x2 - 2x3 = b1

3V3 _ 21,
TX rO

-

T q-
x* _ -Lx* = 2^1 _

1 ft2

Any arbitrarily chosen value of x3 will provide a solution (granted the

condition (1.20) is satisfied).

15. /2 0 0 2\

A= 3 -1 1 0

\2 2 0 0/

(a) Divide row 1 by 2.

/I 0 0 1W1/2 0 0\

3 -1 10 0 1 0

\2 2 0 0/ \ 0 0 1/

(b) Subtract 3 times row 1 from row 2; subtract twice row 1

from row 3.

n oo i\ / 1/2 o o\

(0 -1 1 -3-3 1 0

\0 2 0 -2/\-2 0 1/

(c) Multiply row 2 by -1, and subtract twice the result from

row 3.

Here there is no condition for the equation PAx = y to be

solvable, thus every problem Ax = b is also solvable. The solution

is found by writing the system PAx = Pb:

x1 + x4 = ii1
x2- x3 + 3xA = 3b1 - b2

2x3-8x*= -8Z>1+262 + &3

Clearly, the value of x* can be freely chosen, and x1, x2, x3 are

easily found by the equations.
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Validity ofRow Reduction

The basic point behind the present discussion is that the study of m simul

taneous linear equations in n unknowns is the same as the study of linear

transformations of R" into Rm, which is the same as the study of m x n

matrices under multiplication by m x m matrices. The matrix version of

this story is the easiest to work, if only because it imposes the minimum

amount of notation. However, the linear transformation interpretation is

the most significant, and in the next section we will follow that line of thought.
But first, let us record a proof of the main result of Section 1 . 1 in terms of

matrices.

Theorem 1.2. Let A be an m x n matrix. There is a finite collection

E0 ,
. . .

, Es of elementary m xm matrices such that the product Es E0A
is in row-reducedform. Let P = Es E0 and let d be the index ofPA.

(i) The system Ax = b has a solution if and only if PAx = Pb has a

solution.

(ii) The system Ax = b has a solution if and only if the last m d entries

of Pb vanish.

(iii) n d unknowns can be freely chosen in any solution ofAx = b.

Proof. First of all, we may, by a sequence of row operations, replace A with a

matrix whose first nonzero column is

(!)
namely, supposing the y'th column is the first nonzero column. Thus some entry
in that column, say a/, is nonzero. Interchange the first and yth rows. This is

accomplished by multiplication on the left by an elementary matrix of Type III, call
itE0. Now, E0A = (a/)with a/ #0. Multiply the first rowby (a/)"1; thismakes
the (l,y) entry 1 and is accomplished by means of an elementary matrix, say Ei.
Now, let Et be the elementary matrix representing the operation of adding
-<*/(/)

-1
times the first row to they'th row (thismakes the (/,;) entry zero). Then

Em E0A has its first nonzero column (1.21).
The proof now proceeds by induction on m. If m = 1 the proof is concluded:

the 1 x n matrix (0, . . .
, 0, 1, a}+1 ,

. . .

, al) is in row-reduced form. For m > 1,
the matrix Em E0A has the form
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where B is an (m 1) x (nj) matrix. The induction assumption thus applies to
B. There is a collection F0 ,

. . .
, F, of (m -

1) x (m -

1) elementary matrices such
that Fs F0B is in row-reduced form. Now let

Em+J
-\0 Fj )

Then, it is easy to compute that further multiplication of (1.22) by these matrices

does not affect the first row, and in fact,

E0A:
/0 1 a}+1 aA

\0 0 Fs F0B /

which is in row-reduced form.

(i) Suppose there are x and b such that Ax = b. Then multiplication by P

preserves the equality, so PAx = Pb. On the other hand, supopse x, b are given
such that PAx = Pb. Let fP be the transformation on Rm corresponding to P.

fr is a composition of row operations which are invertible, thus/j. is invertible. In

particular, fP is one-to-one, so since fp(Ax) =fr(b) we must have Ax = b.

(ii) Ifd is the index of themx n matrix PA, its last m d rows vanish. Thus for

PAx = Pb to hold for some x, the last m d rows of Pb must vanish. By (i)

this is also the condition for Ax = b to have a solution.

(iii) The solutions of Ax = b are the same as those of PAx = Pb. This latter

system has the form

xl + a^x2 +

x2 + a32x3

+ an1x"=ZpJ1bJ
+ a2x"=2pj2bJ

x' + ai+1xd+l + + andx" = 2 p/bJ

Clearly, x1, . . .
,
x" are uniquely determined once xd+1, . . .

, x", b\ . . .
,
b" are known.

The b's are restricted by the last m d equations of Pb

free to take any values.

= 0, but x'*1, ...,x" are

EXERCISES

13. Compute the products AB:

(b) A=
j

3^

3;
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(c) A = (6, 6, 3, 2,1,)

(d) A

B

4\
2

-1

8

\ V
4 2 8 6

1 2 -3 0

0 1 1 0

1 0 -1 -1

B =

14. Compute the products BA for the matrices A, B of Exercise 13.

1 5. Compute the matrix corresponding to the sequence of row operations

which row reduce the matrices of Exercise 5.

16. For the given m x n matrix A find conditions on the vector b in Rm

under which the equation Ax = b has a solution.

(a) A as given in Exercise 13(a).

(b) A as given in Exercise 13(b).

/ 3 2\(c)

-1 0

2 -1

0 1

4 V
'2 6 0

4 2 0 0

2 1 0 1

^8 6 0 -1

(d)

17. Show that if A is an m x n matrix with m>n, then there are always

b for which the equation Ax = b has no solution.

18. Verify that the composition of two linear transformations is again

linear.

19. Suppose that T: Rm -* Rm and has this property:

r(E1)=0,...,T(Em)=0.

Show that T(x) = 0 for every x e Rm.

20. Show that there is only one linear function on R" with this property:

/(E,) = E2 ,/(E2) = E3 ,
. . .

, /(E) = Ei

PROBLEMS

1 5. Let /: R" -+ R be denned by f(x\ . . .

, x) = 2?= i x* . Show that /
is a linear function. Is the function

g(x\...,x")= ]>7=i(*02
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linear ? Is the function ftfpc1, x2) = jc1*2 linear ?

16. Suppose that S, Tare linear transformations of R" to Rm- Show that

5 +T, defined by

(S+T)(x) = S(x)+T(x)

is also linear. Show that the matrix representing S + T is the entry by

entry sum of the matrices representing S, T, respectively.

17. Let A, B, C be n x n matrices. Show that

(AB)C = A(BC)

(A + B)C=AC + BC

A(B+C)=AB + AC

Show that AB = BA need not be true.

18. Write down the products of the elementary matrices which row

reduce these matrices:

1 4 7 3 l\ / 6 3 2

1 0 -5 6 2 ~2 -5 4 0

0 1 0 0 3 3 2 1

0 0 5 1 2 \ 3 3 6 3

o -2 -1 1 o

19. Is it possible to apply further operations to thematrices of Exercise 1 8

in order to bring them to the identity? Notice that when this is possible

for a given matrix A, the product P of the elementary matrices corre

sponding to these operations has the property PA = I. That is, P is an

inverse to A. Using this suggestion compute inverses to these matrices

also:

'3 2 !\ 8 6 0 0

0 1 A 0 0 1 0

,1 0 0 0 1 0 0

\2 0 -1 -1

20. Find a 2 x 2 matrix A, different from the identity such that A2 = I.

Find a 2 x 2 matrix such that A2 = I.

21. Is the equation (I + A)(I + B)=I + A + B possible (with nonzero

AandB)?

22. An n X n matrix A = (a/) is said to be diagonal if a/ = 0 for i =j.

Show that diagonal matrices commute; that is, if A and B are diagonal

matrices, AB = BA. Give necessary and sufficient conditions for a diagonal

matrix to have an inverse.
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1.4 Linear Subspaces of R"

In the last section we saw that the equation

Ax = b

can be solved just for b's restricted by certain linear equations and that the

set of solutions of that equation might have some degrees of freedom. In both

cases these sets are determined by some linear equations ; such sets are called

linear subspaces of R". We will begin with an intrinsic definition of linear

subspace and the notion of its dimension. In the next section we shall find

a simple relation between the dimensions of the sets related to the equation
Ax = b.

Definition 4.

(i) A set V in R" is a linear subspace if it is closed under the operations of

addition and scalar multiplication. That is, these conditions must be

satisfied :

(1) v1; v2 e V implies v, + v2 e V.

(2) reR,\eV implies rv 6 V.

(ii) If S is a set of vectors in R", the linear span of S, denoted [5] is the set
of all vectors of the form

c'-Vi -\ 1- ckvk

with v, VjeS.

(iii) The dimension of a linear subspace V of R" is the minimum number

of vectors whose linear span is V.

Linear Span

Having now given the intuitively loaded word "dimension" a definition,
we had better hope that it suits our preconception of that notion. It does

just that in R3 : a line is one dimensional since it is the linear span of but one

vector; and a plane is two dimensional because we need that many vectors

to span it. In fact, it is precisely those observations which have motivated
the above definition. We should also ask that the above definition makes
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this assertion true: R" has dimension n. You may need a little convincing
that this is not immediately obvious, since you do know of n vectors (the
standard basis) whose linear span is R". But how can we be sure that we

cannot find less than n vectors with the same properties ? Consider this

restatement of the notion of "spanning": If the vectors vl5 ..., yk span

R", then the system of n simultaneous linear equations

ZA = b

j=l

has a solution for every b e R". We already know from the preceding section

that this cannot be if k < n, and that gives us a proof that R" has dimension

n. We now repeat the arguments in the present context.

Theorem 1.3. // the set S of vectors in R" spans R", then S has at least n

members. Thus, the dimension of R" is n.

Proof. The proof is by induction on n and goes like this. Supposing that

Vi, . . .
, v* span R", one of them must have a nonzero first entry. Subtracting an

appropriate multiple of that from each of the others, we may suppose that the

remaining k 1 vectors all have first entry equal to zero. Then they are the same

as vectors in -R"-1, and since the original vx, . . .

, v* spanned R" we can show that

these must span R"-1. Now, by induction k 1 > n 1
,
and we have it. (Notice

that this is the same as the first step in the proof of Theorem 1.2.) Here now is a

more precise argument.

If none of the Vi, . . .

, vt has a nonzero first entry then Ei = (1, 0, . . .
, 0) could

hardly be in their linear span. Letting as be the first entry of v,, we may suppose

(by reordering) that at = 0. Now let wx = Vi and Wj
=

v,
-

as ar
'

v2 for / = 2, . . .
,

k. The vectors wi, . . .

, w* have the same linear span as the vectors Vi, . . .
, v* (see

Problem 1 8) ; the difference is that only Wi has a nonzero first entry. LetWi
= (ai , bi),

v/2 = (0, b2), . . .
, wk

= (0, b), where bi, . . .
, b are in Rn~\ Now, b2 ,

. . .
, bt span

R"-1. For let c 6 R"-\ Then (0, c) e R", and since wi, . . .
, v/k span R", there are

x1 xke R such that

i>'W,=(0,c)
1=1

Thus xlai +x2-0-\ h*"-0 = 0, *% H h xkb = c. Since a, # 0, the first

equation implies xx = 0, so the second equation becomes x2b2 H h x*b* = c.

Thus, b2 ,
. . . , bt span R"-\ so by induction k - 1 > n

- 1 ; that is, k > n. Thus,

dim R" > n. On the other hand, the standard basis Ei, . . .
, E clearly spans, so in

fact dim R" = n.
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Examples

16. Let

Vi
= (0, 1, 0, 3)

v2
= (2, 2, 2, 2)

v3
= (3, 3, 3, 3)

be three vectors in R4, and let S be their linear span. Then clearly
dim S < 3. But it is also clear that v3 is superfluous, since v3 =

3/2(v2). Thus S is also the linear span of vx, v2 : if

v = a1v1 + a2v2 + a3\3

then we can also write

v = a\ + (a2 + 3/2(a3))v2

Thus, dim S < 2. In fact, S has precisely dim 2. For suppose there

were a vector w = (a1, a2, a3, a4) which spanned S. Then we would

have numbers cu c2 such that vt
=

qw, v2
=

c2w. Explicitly this

becomes

0 = CiO1 2 = c2a}
1 = cta2 2 = c2a2
0 = cta3 2 = c2a3
3 = cta4 2 = c2a4

But this is clearly impossible. By the second equation we must have

ct / 0, so by the first we must have a1 = 0. But 2 = c2 a1, which
could not be. Thus, dim 5 = 2.

17. Let V be the subset of R4 given by

V= {y.v1 +v2 + v3 -v4 = 0}

V is certainly a linear subspace of R4. We will shortly have the

theoretical tools to deduce that V has dimension 3; with a little

work we can show it now. First of all, let Ax = (1, 0, 0, 1), A2 =

(0, 1, 0, 1), A3 = (0, 0, 1, 1). Then A1; A2 , A3 are all in V, and if
v = (v1, v2, v3, v4), since v4 = vl + v2 + v3 we have

v = v1A1 + v2A2 + v3A3
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Thus V is the linear span of Al5 A2 , A3 ,
so dim V < 3. On the other

hand, if dim V < 3, then Al5 A2 , A3 can all be expanded in terms of

some pair of vectors Bl7 B2. If we delete the fourth entry in all

these vectors this amounts to saying that the standard basis vectors

in R3 can be spanned by a pair of vectors. But dim R3 = 3, so this is

impossible. Thus dim V = 3 also.

Independence

Repeating the definition once again, dimension is the minimum number of

vectors it takes to span a linear space. There is another closely allied

intuitive concept: that of" degrees of freedom" or "independent directions."

In such phrases as "there is a four parameter family of curves," "two

independently varying quantities are involved," allusion is being made to a

dimension-like notion. Now, if we try to pin down this notion mathematic

ally and specify the concept of independence in the linear space context, it

turns out to be precisely the requirement for a spanning set of vectors to be

minimal. In other words, the dimension of a linear space is also the maxi

mum number of degrees of freedom, or indpendent vectors in the space.

Definition 5. Let S be a set of vectors in R". We say that S is a set of

independent vectors if the equation

x1y1 + + x*vk = 0

with x1, . . .
,
x* e R and \u...,vk distinct elements of S implies x1 =

0, . . .
,
xk = 0.

The standard basis of R" is an independent set, as is very easy to verify.

We now verify that R" has in fact no more than n degrees of freedom in this

sense.

Proposition 10. Let \u...,\k be an independent set in R". Then k<n.

Proof. The proof is by induction on k. The case k = 1 is automatically true,

since n > 1 always. Now let us proceed to the induction step (k > 1). Let as be

the first entry of v,\ we can thus write v,
= (at , b,\ where b, e R-1. If all the a,

are zero, then bi, . . .
, bk are an independent set in R"'\ By the induction assump

tion then, k<n l,so k <n. Now suppose instead that some as is nonzero. We

can reorder the given vectors so that d = 0. Let w, = Vi
-

a, aT 'v, for i > 2. Then

the first entry of w, is 0, so w, = (0, (3,) with p, e R-1. p2 P* are an
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independent set in R"'1. For if 2*=2 c'/J, = 0, then also 2J=2 c'w( = 0, so

|-ic'aiWIVi+ 2 c'v,=0
\ 1 = 2 J 1 = 2

Since vi, . . .

, vk are an independent set, c2 = = c* = 0, so p2 ,
. . . , pt are also

independent. Thus, by induction, once again k 1 < n 1 . Thus in every case

k <, n, and the proposition is proved.

Examples

18. Let

vt
= (0, 3, 0, 2)

v2
= (5,l,l,2)

v3
= (1, 0, 2, 2)

In order to show that these vectors are independent we must show

that the system of equations

x1vl+x2\2+x3\3 = 0 (1.23)

has only the zero solution. But this system is the same as the system

corresponding to the matrix whose columns are vx, v2 , v3 :

V2 2 2)

If we row reduce this matrix we obtain

y0 0 0y

Now the system PAx = 0 obviously has only the zero solution: if

x1 + x2 + *3 = 0

x2 + 2x3 = 0

x3 = 0 O-24)

0 = 0
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we find, reading upward that x3 = 0, x2 = 0, x1 = 0. Since P is

invertible then the system Ax = 0 has only the zero solution. What is

the same, if (1.23) holds, so must (1.24), so x3 = x2 = x1 = 0. Thus

the vectors \t, v2 , v3 are independent.

19. Now let

Vl
= (3, 2, 1, 0)

v2
= (1, 2, 3, 1)

v3
= (2, 0,-2,-1)

Again, let A be the matrix whose columns are vt, v2 , v3:

A= I 1 3 -2]
\0 1 -1/

A row reduces to

~4 :firA
lo o ol

\0 0 0/

The system PAx = 0 has the solutions

x1 = -3x2 + 2x3

x2 = x3

The system Ax = 0 has the same solutions. Taking x3 = 1 we have

the particular solution (-1, 1, 1). Thus

-Vi + v2 + v3 =0

20. Four vectors in R3 cannot be independent. Let

?,=(2,1,2)

v2
= (0,3,0)

v3
= (1,0,4)

v4
= (0,l,2)
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Find a linear relation which these vectors must satisfy. If we row

reduce the matrix whose columns are the v's, we obtain the matrix

/l 3 0 1 \

A= (0 1 -1/6 1/3

\0 0 1 -1/

Now, corresponding to any value of x4 we obtain a solution of

Ax = 0, and thus of xVj = 0. Take x4 = 1 . Then

x3 = x4 = 1

x2 = fr3-3-x4 = \
x1= -3x2-x4=-i

Thus

2 Vl
~ iV2 + V3 + V4

= 0

Now, the equivalent form of these two propositions about R", that any

spanning set of vectors has at least n members, and any independent set has

at most n members, holds for any linear subspace of R" as well.

Proposition 11. Let Vbea linear subspace ofR" ofdimensions d.

(i) A spanning set has no less than d elements.

(ii) An independent set has no more than d elements.

Proof. Part (i) is of course just the definition, so we need only consider part (ii).
The proof amounts to a reduction to the case where V is R", and an application of

Proposition 10.

Let Wi,...,wd span V; since V has dimension d there exists such vectors.

Suppose, as in (ii), that vt, . . .

, vk are independent vectors in V. Then we can write

each Vj as a linear combination ofWi, . . .
, wd;

vj
= 2 flj'w, 1 <, j <, k
j=i

for suitable numbers a/. The vectors (/, . .

., a/) for j = 1, . . .
,
k are vectors in

R" corresponding to the vectors {v,}; we shall now show that they are likewise

independent. For if,

io(fl/,...,a/)=0
j=i
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then also 25 = i cJ\j = 0 by this computation:

k k i ilk \

%cJ\j= 2cJ2/w,= 2 2cV|Wi=0-WiH hO-w
J=l J=l 1 = 1 l=l\j=l /

Thus, by the independence of Vi, . . .

, vt ,
we must have c1 = 0, . . .

,
c* = 0. Thus

the k vectors (a/, ..., a/) are independent in R", so by Proposition 10 d> k.

Definition 6. Let Fbe a linear space. A basis of V is a set 5 of vectors

such that each v s V can be written in the form

k

v = 2! c% witn cl e R,\te S
;=i

in one and only one way.

Another way of putting this is: a basis for a linear subspace V is a set of

independent and spanning vectors in V.

Proposition 12. S is a basis for the linear space V if and only if both these

conditions hold:

(i) S is an independent set,

(ii) the linear span of S is V.

Proof. Suppose that S is a basis of V. Since every vector in V can be written

as a linear combination of vectors in S, certainly (ii) is true: Kis the linear span of 5.

Since 0 can be written in only one way as a linear combination of vectors in V, any

time we have

c1vi + ---

+ c'vt = 0

with c1, . . .
,
& in R and vi; . . .

, vk distinct members of S, we must have c1 =

0, . . .

,
c* = 0 (since 0 = 0 Vi -I \- 0 v* also). Thus (i) holds : S is an indepen

dent set.

Conversely, suppose now that (i) and (ii) are true for the set S. Then (by (ii))

any vector v in V can be written

v = ciVl +
... + c*Vt (1.25)

with c' e R, v, e S. This can be done in only one way because of the independence.

In fact, suppose (1.25) holds, and also

Y=aiVl +
..- + akvk 0-26)

is true, with (c1 a^vi -I h (ck ak)yk = 0, so c' = a' since the v, are independent.
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Dimension and Basis

The important facts to know about dimension of linear subspaces of R"

are these : such a space V always has a basis with a finite number of elements.

That number is the same for all bases and is the dimension of V, and is not

greater than n. We summarize this as follows :

Theorem 1.4. Let V be a linear subspace ofR".

(i) There is an integer d<n such that V has dimension d.

(ii) Any basis of V has precisely d elements.

(iii) d independent vectors in Vform a basis.

(iv) d spanning vectors in Vform a basis.

Proof, (i) The proof of this part of the theorem is by mathematical induction

on n. If n = 1, either V= {0} or V has a nonzero vector, in which case V=R.

Thus either dim V= 0 or 1
,
so dim V< 1 . Now we proceed to the induction step.

Let us describe how it goes. We assume the assertion (i) for n 1, and consider

R"'1 as the set of w-tuples in J?" with zero first entry. If Kis a subspace of R", it

intersects this space in some subspace of R"~* which is, by induction spanned by
some S vectors, with 8<n 1. Now, choosing any other vector in V with a

nonzero first entry, this together with the vectors referred to above will span V.

Now we make this argument precise.
Let V be a subspace of R". If V= {0}, then dim V= 0 ; if not, V has a nonzero

vector v0 = (a1, ..., a"). One of the entries is nonzero; we may, by reordering the

coordinates assume that a1 ^ 0. Let now

W= {weR-1:(0,w)e V}

Wis a linear subspace of R"-1. For if Wi , w2 e W and c\ c2 e R, we also have

c\0, wi) + c2(0, w2) = (0 , c'wi + c2w2)

in V, so c'wi + c2w2 e W. Now, by the induction hypothesis, W has dimension

8 ^ n
- 1. Let wi, . . .

, ws span W. By definition of W, Vi = (0, Wi), . . .
, \6

=

(0, wa) are in V. Now we need only show that v0 , Vi, . . .

, v span V. Let v e V, and
let c be its first entry. Then v -

c(a*)
"

'v0 is also in V and its first entry is 0. Thus

this vector is of the form (0, w) with weI^. Then there are c1 c" such that

W = CJWi H h cVa

Thus

v
-

c(a1)"1Vo = (0, w) = c'CO, w,) + + cs(0, w5)
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or,

v = c(a1)~1v0 + c'vi H h c'va

Thus, there are 8 + 1 vectors which span V, so Khas dimension d with d< 8 + 1 <

(n-l)+l=n.

(ii) This follows easily from Proposition 12. If 5 is a basis for V (dim V = d),

then since S spans, it has at least d elements, and since 5 is independent it has at

most d elements.

(iii) Suppose that Vi vd are independent vectors in V; we must show that

they span. Let y0eV. By Proposition 12(ii), since dim V= d, v0, .
.., vd are

dependent, so there exist (c c") # 0 such that

cv0 H h c-v,, = 0

If c = 0, since Vi, . . .

, vd are independent we must also have c1 = = cd = 0, a

contradiction. Thus c # 0, so v0 =(c0)'1^! ^ h cdvd) as desired.

(iv) Suppose that vi7 . . .

, vd span V. If they are dependent, then the equation

c'vi H 1- Cvd = 0

holds with at least one c' = 0. If say c' # 0, then

vr
= (-^"'(c'vi + + C-'vr-i + c'+1vr+1 + + Cvd)

so Vi,...,vd, with vr excluded, also span V. Hence, Khas dimension at most

d 1, a contradiction, so we must have had Vi, ..., v independent and thus a

basis.

This final proposition, whose proof is left as an exercise, is an indication of

the (theoretical) ease in finding bases.

Proposition 13. Let V be a linear subspace of R" of dimension d.

(i) Any set of vectors whose span is V contains d vectors which form a basis.

(ii) Any set of independent vectors in Vispart ofa basisfor V.

Examples

21 . Find a basis for the linear span V of the vectors

Vl
= (4, 3, 2, 1)

v2
= (5, 2, 2, 1)

v3
= (0, 1, 0, 1)

v4
= (1, 0, 0, 1)

and express V by a linear equation.
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We want to find all vectors b of the form

x\ = b (1-27)

and we want to find a basis for such vectors. Now (1.27) is the

system corresponding to the matrix A whose columns are the vectors

?i, v2 v3 . v4 Trie sPan f these vectors is Just trie range of A. If

P is a product of elementary matrices row reducing A, then any vector

b is in the range ofA if and only if Pb is in the range of PA. Thus by

row reduction we should easily be able to solve our problem.

A =

The end result of row reduction produces

'11 1 V

PA=|
l ~!
| P =rA '

0 0 1 1
r

yO 0 0 Oy

Thus, the range of A is obtained by setting the fourth entry of Pb

to zero :

V = range ofA = {(b1, b2, b3, b4) -.b1 + b2 - fb3 - 4b4 = 0}

V has dimension at least three since it contains the independent vectors

(4, 0, 0, 1), (0, 4, 0, 1), (0, 0, 2/3, -

1/4). On the other hand, V # R4,
so dim V < 3. Thus, dim V = 3 and these three vectors are a basis.

22. Find a basis for the linear subspace V of R5 given by
the equations

5*1 + 8x2 + 3x3 + x4 + x5 = 0

x1 - x3 - x5 = 0

x2 + 2x4 =0

We are seeking the solution space of Ax = 0, where

(5 8 3 1 1\

A= 1 0-10 -1

\0 1 0 2 0/

0 0 0 1

1 0 0 -4

0 0 -1/2 1

,1 1 -3/2 -4
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Row reduction leads to

/l 0 -1 0 -1\
PA= 0 1 0 2 0

\0 0 -2 -15 6/

and V is the set of x such that PAx = 0. According to these equations
x4 and x5 are to be freely chosen and jc1, x2, x3 determined by this

choice. Thus, dimF=2. Choosing (x4, x5) = (1, 0), (0,1), re

spectively, we obtain as a basis

(-. -2, -Y.1.0) (4,0,3,0,1)

EXERCISES

21. What is the dimension of the linear span of these vectors?

(a) Vl =(-1,2, -1,0)

v2=(2,5,7,2)

?,=(0,2,1,1)

t4 = (3, 5, 7,1)

(b) Vl =(-1,0,2, 1)

?a =(2, 2, -2,2)

Ta =(1,1, 1,1)

(C) Vi= (0,2,1, 1)

?a = (1,7, 3, 3)

v3=(0,0, 0,1)

v=(l,3, 1,2)

v5=(l,5,2,2)

(d) Tl= (0,0, 1,1,1)

v2= (1,0, 0,1,1)

?a =(0,1, 0,1,0)
22. What is the dimension of the space S given by these equations:

(a) S = {x Rs : x1 + x2 - x3 - x* = 0, x1 + x3 = 0}

(b) 5 = {x e Rs: x2 + x* + xs =0, x1
- x3 + x* =0

x1 - x2 - x3 - xs = 0}

(c) S = {x e R*: x1 + x2 + x3 = x3 - x2 - x1 + x*}

23. Determine the linear span of these vectors by a system of equations

(a) ^=(1,0,0,1)

?a=(0, 1,1,0)

?,= (0,1,0,1)

(b) vx=(2,2,6,2)

v2
= (l,2,3,0)

v3 =(0,1,0,-1)

(c) ?!=(!, 0,1)

?a
= (-1,1,1)

(d) vx= (1,0, 0,0,0)

v2=(2,0, 1,0, 1)
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24. Are these vectors independent?

(a) Vi, . . .

, v5 as given in Exercise 21(c).

(b) Vi, v2 , v3 as given in Exercise 23(a).

(c) ^=(0,2,0,2,0,6)

?a =0,1, -1,-1, 1,1)

v3=(2,4,6,8,10,12)

V4
= (0,0, -2, -2,0,0)

v3= (0,1, 0,0, 1,0)

v6= (1,1, 1,1,1,1)

25. Find all linear relations involving these sets of vectors.

(a) Vl =(0,1,1)

v2
= (5,3, 1)

v3= (0,2,0)

v4 = (1,-1,1)

(b) v1=(0,2,0,2)

v2 = (0,l,0,0)

v3= (0,1,0,1)

v*
= (0, 0, 0, 1)

Ts=(l, 0,-1,0)

(c) ^=(0,0,0,0)

?a
= (1,1, 1,1)

V3 = (1,1,0,0)

V4 = (0,0, -2, -2)

26. Find a basis for the linear subspace of Rs spanned by (0, 0, 0, 1, 1),

(0, 1, 0, 0, 0), (1, 0, 0, 0, 1), (1, 1, 0, 0, 1), (2, 1, 0, 1, 2)
27. Find a basis for these linear spaces:

(a) {(x1, ...,x5)eR5:x1 + 2x2 + x3 =0, x1 + 2x* + x5 =0,

x' + x'^O}

(b) {(x1, ...,xi)eR*:x1-x2 + x3-x*=0,x1-x3=0}
28. If the given vectors on Rs are independent, extend them to a basis:

(a) (0, 0, 0, 0, 1), (0, 0, 0, 1, 1), (0, 0, 1, 1, 1)

(b) (1, 5, 2, 0, -3), (6, 7, 0, 2, 1), (1, 0, -1, -2, 0), (1, 1, 1, 1, 1)

(c) (4, 4, 3, 2, 1), (3, 3, 3, 2, 1), (2, 2, 2, 2, 1)

PROBLEMS

23. Suppose we are given k vectors Vi, ...,v* in R". Let wi=Vi,

w2 =v2 /J2Vi,..., w*=v* /3tvi for some numbers /32, ...,/?*. Show

that the sets {vi, . . .

, vj and {wi, . . .
, w*} have the same linear span.

24. The proof of Theorem 1.3 proceeds by assuming that the set S con

sists of the vectors Vi, . . .

, vt. What of the case where S has infinitely

many elements?

25. Prove Proposition 13.

26. Show that if V, W are subspaces of R", so is Vn W.



1.5 Rank + Nullity = Dimension 53

27. Show that if A is obtained from B by a row operation, the linear span
of the rows of A is the linear span of the rows of B.

28. Show that if A is a row-reduced matrix the dimension of the linear

span of the rows of A is the same as its index.

1.5 Rank + Nullity = Dimension

Now let us apply the propositions of the preceding section about linear

spaces, and in particular the notion of dimension, to the subject of linear

transformations. There are certain obvious linear spaces to be associated

to a given transformation.

Definition 7. Let T: R" -> Rm be a linear transformation.

(i) The set

K(T) = {veR":T(\) = 0}

is a linear subspace of R", called the kernel of T. Its dimension is the nullity

of T, denoted v(T).

(ii) The set

R(T)= {T(v):veRn}

is a linear subspace of R", called the range of T. Its dimension is the rank

of T, denoted p(T).

Theorem 1.5. Let T: R" - Rm be a linear transformation. We have

n = v(T) + p(T)

that is, dimension = nullity + rank.

Proof. For short, write v(T) as v. Let Vi, . . .
, v, be a basis for the kernel of T.

Let v+i, . . .

, v be the rest of a basis for R": vi, . . .
, v, , vv+i, . . .

, v thus span

R". Let y/j
= T(\j) for j v+ 1, ..., n. Now the crux of the matter is this:

wv+i, . . .
, w form a basis for the range of T. Once this is shown, we will have

p(j) = n v, which is the desired equation.

(i) Let w e R(T). Then there is a v e R" such that w = T(v). Expand v in the
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basis vi, . . .
, v: v

= c'vi + \- c"\ . Then

vi=T(v) = T(c1Yi + + c"\)
= c'^vi) + + c"T(vv) + cv+1r(vv+1) + + cT(v)
= cv+1wv+i +

---

+ c"w

The second line is justified since T is linear and the third follows since Vi, . . .
, vv are

in the kernel of T and T(vv+i) = wv+i, , T(v) = w. Thus these last vectors

span R(T).

(ii) wv+1, ..., w are independent. Suppose

cv+1wv+1 +
-"

+ c"w=0 (1.28)

We must show that the {c1} are all zero. In any event, from (1 .28) we have

r(cv+1vv+1 + + c"v) = cv+17(vv+1) + + cT(v) = 0

so cv+1vv+i -I h c"v e .(7"). vi, . . .
, vv span ^(J) so there are c\ . . .

,
c" such

that

cv+1vv+1 H h c"v = c'vi H h cvvv

or

(-c^Vi + + (-cv)vv + cv+1vv+1 + + c"v = 0

Since vi, . . .
, v are independent, all the cJ are zero, as required. The theorem is

proven.

Examples

23. Let T: R4 -> R3 be given by the matrix

/l 3 2 7\

A= (0 0 1 1 (1.29)
\0 1 0 0/

We can completely analyze this transformation by row reduction.

A easily row reduces to

/l 3 2 7\

0 10 0 (1.30)
\0 0 1 1/
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merely by interchanging the last two rows. Thus, letting P be the

transformation corresponding to

f. 2 !)\o 1 0/

we know that PT is the linear transformation corresponding to (1.30).

Now, the range of PT is easily seen to be all of R3, and the range of

T is P~
1

(range of PT), which is again all of R3, so p(T) = 3. The

kernel of T is the same as the kernel of PT, which has the equations

given by (1.30):

x1 + 3x2 + 2x3 + lx4 = 0

x2 = 0 (1.31)

x3 + x4 = 0

The set of all such solutions is found by letting x4 take on all real

values and solving for the remaining coordinates by (1.31). Thus

K(T) = {( St, 0, -t,t): te R}, which is one dimensional.

24. Let T: R4 -> R4 be given by the matrix

A =

Let us row reduce this matrix, keeping track of our row operations :

10 0 0^

0 10 0

-3010

-200L

P =

0 0 0 Oy

Now, the kernel of T is easy to find; it is the same as the kernel of

the transformation S corresponding to the last matrix PA (because
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S = the composition of T by an invertible transformation). Now the

kernel of S, and thus also of T, has, corresponding to the matrix PA,

the form:

x1 + x2 + x3 + 2x4 = 0

x2 + x4 = 0

0 = 0

0 = 0

or x2 = x4, x1 = x3 x4. Thus,

K(T) ={(-( + v), -v, u, v): (u, v) e R2}

so v(T) = 2. The range of T is a little harder to find. If R is the

transformation corresponding to the product of the elementary
matrices on the left, then S = R ? T, so the range of T is R_1 of the

range of S, which has the equations x3 = x4 = 0. (That is, the vector

(b1, ... , b4) is in the range of S if and only if there exist (x1, ..., x4)
such that

x1 + x2 + x3 + 2x4 = b1

x2 + x4 = b2

0 = b3

0 = b4

The necessary and sufficient condition is b3 = b4 = 0.) Thus the

necessary and sufficient condition for v to be in the range of T is that

Pv be in the range of S; that is, the third and fourth coordinates of

Pv must vanish :

-3*1 +4x2 +x3 =0

-2X1 -5x2 + x4 = 0

Thus, p(T) = 2.

25. Let us do one more example briefly. Suppose that T: R3 -> Rs

corresponds to the matrix

/l 0 1\

2 1 3

0 1 1

1 1 2

\4 3 7/
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This matrix can be row reduced to

A =

/I 0 1\

0 1 1

0 0 0

0 0 0

\0 0 0/

by multiplication on the left by this matrix

P =

1 0 0 0 0\

2 1 0 0 0

2 -1 1 0 0

1 -1 0 1 0

1 -1 -1 -1 1V

The kernel of T can be found by looking at the row-reduced form A;

it is the set of x = (x1, x2, x3) in R3 such that Ax = 0. Precisely, we

must have x1 + x3 = 0, x2 + x3 = 0. Thus a vector is in K(T) if

its first and second coordinates are the negative of the third ; that is,

K(T)= {(-t, -t,t):teR}. Thus v(T) = 1. The range of T is

the set of x = (x1, . . .

, x5) such that Px is in the range of A (since

A = PT). The 5-tuples in the range of A are precisely those with

third, fourth, and fifth coordinates zero. Thus the third through fifth

coordinates ofPxmust be zero for x to be in the range of T. Specifically

R(T) is the set of simultaneous solutions of

2X1 -x2 + x3 = 0

X1 -x2 + x4 = 0

-x1 -x2 -x3 -x4 + x5 = 0

We can take x1, x2 as free variables and use these equations to define

x3, x4, x5 ; thus

R(T) = {(u, v-2u,v-u,3v- 2u) : (u, v) e R2}

so p(T) = 2.

These examples illustrate the fact that Theorem 1.5 can be formulated

purely in terms ofmatrices. We now do just that.
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Proposition 14. Let A be an m x n matrix, representing the linear trans

formation T: R" ->Km. Then

p(T) = number of independent columns ofA

= number of independent rows ofA

= index of the row-reducedmatrix to which A can be reduced.

Finally, we can also reformulate Theorem 1.5 as a conclusion for systems

of linear equations, thus bringing us to the ultimate version of Theorems 1.1

and 1.2.

Theorem 1.6. Suppose given a system ofm linear equations in n unknowns,

and suppose d is the index, or rank, of the corresponding matrix A. Then

(i) d <m,d < n.

(ii) {x: Ax = 0} is a vector space of dimension n d.

(iii) {b : there exists a solution ofAx = b} is a vector space of dimension d.

EXERCISES

29. Describe by linear equations the range and kernel of the linear trans

formations given by these matrices in terms of the standard basis :

(a)

(b)

(c)

(d) /8 0 0 1 6\

30. Find bases for K(T), R(T) for each T given by the matrices (a)-(d) of

Exercise 29.

31. Let /: R"->R be a nonzero linear function. Show that the kernel

of /is a linear subspace of R" of dimension n 1.

32. Let f(x\ ...,*") = 2"= i *' Find a spanning set of vectors for the

kernel of/.
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PROBLEMS

29. Let T: R" -> Rm be a linear transformation. Then K(T) and J?(D
are linear subspaces of R", Rm, respectively.

30. Let T be the transformation represented by the m x n matrix A.

Show that R(T) is spanned by the columns of A. Show that

K(T)={(x\...,x): fCjxJ=0}

where d, . . .
, C are the columns of A.

31. Let w e R". Define _|_(w) as the set of v such that 2"=i v'w'=0.
Show that for w ^ 0, J_(w) is a subspace of Rn of dimension n\.

32. Let S = R\ Define (S) as the set of v such that 2?=i v'w' = 0 for

all w e S. Show that (S) is a subspace of R", and dim (S) + dim[S] = .

1.6 Invertible Matrices

In this section we shall pay particular attention to the collection of linear

transformations of R" into R" or, what is the same, the n x n matrices.

From the point of view of linear equations this is reasonable ; for it is usually
the case that a given problem will have as many equations as unknowns.

First of all ; it is clear that there are certain operations which are defined

on the collection of all linear transformations of R", thus making of this set an

algebraic object of some sort. We collect together all these notions in the

following definition.

Definition 8. The algebra of linear operators on R" denoted by E", is the

collection of linear transformations provided with these operations :

(i) if/is in ", and c is a real number,

(cf)(x) = cf(x)

(ii) if/ g are in E",f+g is defined by

(f+g)(x)=f(x) + g(x)

(iii) fgis defined by

(fff)(x)=f(9(x))
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It is important to think of the elements of E" as functions taking n-tuples

of numbers into ra-tuples of numbers ; but in working with them it is convenient

to represent them in terms of the standard basis by matrices. Thus, we are

led to consider also the algebra M" of real n xn matrices with the operations

of scalar multiplication, addition and multiplication, the definitions of which

we now recapitulate.

Definition 9. The algebra M" is the collection of n xn matrices provided

with these operations :

(i) IfA = (a/) is in M", and c is a real number,

cA = (ca/)

(ii) If A = (a/) and B = (b/) are in M", then

A + B = (a/ + b/)

AB=(ak%k])
The two algebras E", M" are completely interchangeable, for M" is just

the explicit representation of E" relative to the standard basis.

Now the operations on M" obey certain laws, some of which we have

already observed in previous sections. Let us list some important ones.

Proposition 15. These equations holdfor all n xn matrices A, B, C and all

real numbers k.

(i) k(A + B) = A:A + A:B

(ii) C(A + B)=CA + CB

(iii) (A + B)C = AC + BC

(iv) A(BC) = (AB)C

If A is a given matrix, we shall let A2 denote A A, A3 = A A A, and

in general A" is the -fold product of A with itself. Since we may also add

matrices, and multiply by real numbers, we may consider polynomials in a

given matrix. That is, A2 + 3A + A, A7 + 3ttA3 + A6, . . . . In fact, if

we adopt the usual convention that A0 = J, then for any polynomial
PVQ = X"=o ctX' in the indeterminate X, we may consider the matrix p(A) =

Z"=o c;A'. A most remarkable observation can now be made, by noticing
that the collection M" of n x n matrices is the same as the collection R"2 of

2-tuples of real numbers.
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Proposition 16. Given any n x n matrix A, there is a nonzero polynomial

p ofdegree at most n2 such that p(A) = 0.

Proof. An element ofM" is a rectangular array of n2 real numbers, thus corre

sponds to an element of R" . We may make this correspondence explicit, by, say,

placing the rows one after another. That is, the matrix (a/) corresponds to the

vector (ai1, . . .
, a,1, ai2, ..., an2, d3, . . .

, al- 1, a") in R"2. In any event, the notions

of sum and scalar multiplication is the same in the two interpretations. Now con

sider the matrices I, A, A2, ... ,
A"2. These n2 + 1 vectors in R"2 cannot be inde

pendent so there are real numbers c0 , cu . . .

, c2 , not all zero, such that

c2A"2 + + c2 A2 + CiA + coI=0

Thus the proposition is verified with p the polynomial

p(X) = c2 X"2 + + c2 X2 + ClX+ Co

We may rephrase this proposition in this way: Every matrix is a root of some

nonzero polynomial equation with real coefficients. From the purely

algebraic point of view this formulation is of some interest and raises the

converse speculation: given a polynomial with real coefficients, does it have

some n xn matrix as a root? We shall verify this fact, and with n no greater

than two. More precisely, we shall, in a later section, introduce the system

of complex numbers as a certain collection of 2 x 2 matrices, and later verify

that every real polynomial has a root in the system of complex numbers.

This is known as the fundamental theorem of algebra.

Now, a linear transformation in E" is invertible if it has an inverse as a

function from R" to R". For this it must be one-to-one and onto; that is,

it must have zero nullity and rank n. We have seen (n = rank + nullity)

that either of these assertions implies the other. Now it is clear that these

assertions must be expressible in terms of matrices; we now do that.

Definition 10. The nxn matrix A is invertible if there is a matrix B such

that BA = I = AB. In this case B is said to be an inverse for A.

Proposition 17. An invertible matrix has a unique inverse.

Proof. This is clear : if B, C are inverses to A, then all these equations hold :

BA = I = AB CA = I = AC

Then

B = BI = B(AC) = (BA)C = IC = C
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We shall denote the inverse of a matrix A, if it exists, by A 1. The relation

ship between matrices and linear transformations gives us this propostion:

Proposition 18. Let A be an n x n matrix. These assertions are equivalent:

(i) A is invertible.

(ii) A represents an invertible transformation.

(iii) There is a matrix B such that BA = I.

(iv) There is a matrix B such that AB = I.

(v) A has index n.

Proof. We have already seen (in discussing systems of linear equations) that (ii)
and (v) are equivalent. By definition (i) implies both (iii) and (iv). Thus we have

left to prove that (i) and (ii) are equivalent, (iii) implies (i), and (iv) implies (i).

(i) implies (ii). Let A be the given invertible matrix, and T the transformation

it represents. Let S be the transformation represented by the inverse, A-1, of A.

Since A A-1 = I = A_1A, we have T- S = I = S T. Thus S is inverse to T, so

(ii) holds.

(ii) implies (i) by the same kind of reasoning with the roles of matrix and trans

formation interchanged.

(iii) implies (i). If T is the linear transformation represented by A, then by (iii),
there is a transformation S such that S T= I. Thus, if T(x) = 0 we must also

have x = S(T(x)) = S(0) = 0, so T has nullity zero and is thus invertible. Thus

(iii) implies (ii), so also implies (i).

(iv) implies (i). If again, T is the transformation represented by A, by (iv) there
is a transformation S such that T S = I. This implies that T has rank n and thus

is invertible.

Computing the Inverse

Now, it is clear that the question of invertibility for a given matrix is

important and that the problems arise of effectively deciding this question
and of effectively computing the inverse, if it exists. To ask that the rows

(or columns) be independent, or span R", while responsive to this question
hardly provides a procedure for determining invertibility. We shall now

introduce two such procedures: one is a continuation of row reduction and

the second is based on the notion of the determinant. The determinant is a
real-valued function defined on the algebra M" of n x n matrices; its basic
property is that it is nonzero only on the invertible matrices. We shall

depend heavily on the determinant in the study of eigenvectors (Section 1.7).
In Section 1.9 we shall explore the connection between the determinant and
the notion of volume in R3.



1.6 Invertible Matrices 63

In order to verify the critical properties of the determinant function it is

necessary to return to the elementary matrices, for they provide a technique
for decomposing an invertible matrix into a product of simple ones, and as

a result, a technique for computing inverses. We recall these facts: the

elementary matrices are the matrices which represent the row operations.
Since the row operations are invertible, so are the elementary matrices

invertible. For any matrix A there is a sequence Ps ,
. . .

, P0 of elementary
matrices such that B = PjPj-j P0A is in row-reduced form. The index

of A is the number of nonzero rows of B. We augment these facts by this

further observation:

Proposition 19. Suppose that A is an invertible n x n matrix. There is a

sequence P, P0o/ elementary n xn matrices such that P, P0A is the

identity matrix:

P, P0A = I

Proof. The proof will be by induction on n. It is a slight modification of

Theorem 1.2. The first column of A is nonzero since the columns of A must be

independent (A is invertible). As we have seen in the proof of Theorem 1.2, there

exist elementary matrices P0 ,
. . .

, P* such that the first column of P* P0A is Ei.

Thus,

1 n-1

/l Al\ 1

P*---P0A-|o A22j n-1

Since P* P0A is invertible so is A22 (see Problem 37). Thus the proposition

applies to A22. There is a sequence Qs ,
. . .

, Q*+i of elementary (n - 1) x (n - 1)

matrices such that Qs Q*+iA22 = I. Let

Pj = ( q) *>r7 = * + l,...,J

P.-PA = (J q' ... Qt+lA22) = (o 1)
Now the matrix

(I -f)
is the product Ps+_, Ps+i of elementary matrices corresponding to these row
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operations: subtract a/ times they'th row from the first row, j = 2, ...,n. Finally,

p.+-i-poa=(j _f)(0 f)=(j ;)=i
as required.

This proposition provides us with an effective way for computing inverses;

we just continue the process of row reduction until we obtain the identity.

Then the corresponding product of elementary matrices is the inverse.

Examples

26.

/ 1 2 2\

A= -3 4 2

\ 1 0 8/

Row reduction Product of elementary matrices

/I 2 2\ / 1 0 0\
0 10 8) 3 l 0

\o - 2 6/ \-l 0 1/

A 0
A\ / - -iV o\

0 1 * * iV o

\o 0 w \-A A 1/

/i
0
\

/ 13 7

/ 190

21

190 -iV\
0 1 0 1 190

1 5

190 -A
\o 0 1/ \ 76

2

76 w

Thus

/ 137 -21 -10\

A_1=Tfo 65 15 -20

\-10 5 25/

27.

(212
1\

10 1 2

-1 -1 0 1

-1 4 1 -24/
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T 0 1 2\ / 1 0 0'

2 1 2 1 I 0 0 0

0 -1 1 3 0 1 1 0

0 4 2 -22/ \o 1 0 1,

'10 1 2\ / 0 10 0^
0 1 0 -31/ 0-200
0 0 1 Oil 1 -1 1 0

^0 0 2 -10/ \-4 9 0 1;

'10 0 2\ l-\ 2 -1 0^
0 1 0 -31/ 1-2 0 0

0 0 1 oil 1 -1 10

0) 0 0 -10/\-6 11 -2 1,

n o o o\ /-u ft -u
o i o oW if -I* a
0 0 1 ON 1-1 1

^0 0 0 1/ \ -4

Thus,

10 10 10

The Determinant Function

The determinant of a matrix is a pretty complicated concept; before going
into a study of it and its properties, we shall first see how to compute it.

Looking ahead, the method of computation comes from Equations (1.35)
and (1 .36), but we shall not use those equations to derive it. Instead we shall

simply describe the technique for finding determinants.

The determinant of a 2 x 2 matrix is defined by

det I ,) = ad be

The determinant of a 3x3 matrix is found as follows. First, select

a row. The determinant will be a sum of the products of the elements of that

row withy numbers, called their cofactors. The cofactor of the (i,j)th entry

is (- 1)'+-' times the determinant of the 2 x 2 matrix remaining when the rth

row and/th column are deleted.
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Examples

28. Compute the determinant of

/ 1 3 2\

A= -1 4 0

\ 7 -2 1/

If we select the first row we find

det A = 1[4(1)
- (-2)0]

- 3[(- 1)0)
- 7(0)] + 2[(- 1)(-2)

- 7(4)]
= -45

Selecting the second row:

det A = -(- 1)[3(1)
- (-2)2] + 4[1(1) - 2(7)] + 0[. . .]

= -45

Selecting the third row:

det A = 7[3(0)
-

4(2)]
- (-2)[1(0) - 2(- 1)] + [1(4) -

3(- 1)]
= -45

Now, we could also have selected a column first, and proceeded in the

same way. For example, selecting the second column:

det A = -3[(- 1)1 - 0(7)] + 4[1(1) -

7(0)] - 2[1(0) - 2(- 1)]
= -45

Now, in general, the determinant of the n x n matrix is found in

the same way. Select a row (or column). The determinant is the

sum of the products of the entries in that row (or column) with their

cofactors. The cofactor of the (i,j)ih entry is (-1)'+J' times the

determinant of the (n - 1) x (n
-

1) matrix remaining when the rth

row andy'th column are deleted.

29. Let

(431
0\

2 6 0-1

10 0 4l
2 11-1/
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Select the first row

/6 0

det A = 4 det j 0 0

\1 1

(2 6

+ det 1 0

\2 1

12 0 -1\

3 det 1 0 4

\2 1 -l)

12 6 0\

Odet 1 0 0

\2 1 1/

We now compute the determinants of the 3 x 3 matrices by taking

advantage of the location of the O's. Select the second column in the

first three, and don't bother with the last since its factor is 0:

det A = 4(-l)[6(4) -

0(-l)]
- 3(-l)[2(4) - 1(-1)]

+(-6)[l(-l) - 4(2)] - [2(4) - 1(-1)]
= -24.

30.

A =

/6 2 1

4 3 8

0 0 2

8 1 4

\2 1 4

Select the third row:

detA = (-l)3+3(2)det

0 ~l\
1 0

0 0

0 1

-1 1/

/6 2 0 -1

I4 3 1 0

8 1 0 1

\2 1 - -1 1

Select the third column:

/6 2

detA = 2(-l)2+3det 8 1

\2 1

= 96

+ (-l)4+3(-l)det 4

\8

2 -1\

3 0

1 1/

We turn now to the theory of determinants. We begin with a definition

of the determinant function which is appropriate to the theoretical dis

cussion and then verify that it has the multiplicative property:

det(AB)= det A- det B
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The formulas (1.35) and (1.36) below which form the basis for the preceding

computations will result from a rewriting of the formula for the determinant.

The determinant of an n x n matrix can be described in this way: it is

the sum of all products of precisely one element from each row and column,

with appropriate signs. Our first business is to determine this appropriate

sign. A selection of precisely one element from each row and column is

described as follows: In the first row we select a certain element, say in the

7t(l) column. In the second row we select an element, comingfrom a different

column, say n(2). We have n(2) ^ n(\), and so forth. We select the ele

ment a\{i) in the rth row and 7i(i)th column, making sure that the numbers

n(\), ..., n(n) are all distinct. These numbers then form a rearrangement,

or permutation of the numbers 1, . . .

,
n. To form the determinant then, we

consider all products

2(1)
' ' '

ait(n)

as 7t ranges over all permutations of the numbers 1, . . .

,
n. A particular

kind of permutation is an interchange of two successive integers:

1-1

2-2

i-

i+1-

+ 1

h n

(We consider the integers as arranged in a circle, so that 1 is the successor to

n.) Now it is a fact about permutations, that any permutation consists of a

succession of such interchanges. There may be many ways to build up a

given permutation by these simple interchanges, but the parity of the number

involved is always the same. That is, ifwe can write a given permutation as a

succession of an even number of interchanges, then every way of writing that

permutation as a succession of interchanges will involve an even number.

For example, consider the permutation on four integers

1 2 3 4-3 1 4 2

This is obtained by this succession of interchanges:

12 3 4

2 13 4

2 3 14

3 2 14

3 12 4

3 14 2
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Here is a better way of doing it:

12 3 4

13 2 4

3 12 4

3 14 2

Either way, there is an odd number of interchanges involved. We shall not

verify these facts about permutations; the verification would be tangential
to our present study. However, we shall use these facts. We shall say that

a given permutation is even if it can be formed by an even numbered succession

of interchanges ; the permutation is odd if an odd numbered succession of

interchanges is required. For any permutation n, its sign, denoted e(n)
will be + 1 if n is even, and 1 if n is odd. There is another way of defining
the sign function on permutations which is described in Problem 36. This

description does not involve the notion of interchange.

Definition 11. If A =

(a/) is an n x n matrix its determinant is

detA= e(X>fl<o (1-32)
all permutations n 1=1

We shall now show that det A # 0 if and only if A is invertible, by showing
in fact a stronger statement : det (AB) = det A det B.

Lemma 1.

(i) det 1=1.

(ii) IfA has a zero row, det A = 0.

Proof.

(i) Writing I = (a/), we have ai<0 =0, unless ttQ) = i. Thus, the sum (1.32)

has only one nonzero term, that corresponding to the identity permutation. Since

each a,' = 1, det I = 1 1 1 = 1.

(ii) If the /th row of A is zero, each term of the sum (1.32) has a factor a{u) = 0,

so is zero. Then det A = 0.

Lemma 2. IfP is an elementary matrix, and A any matrix,

det(PA) = det P det A (1 -33)

Proof. Let A = (a/), PA = (b/).

Type I. If P multiplies the rth row by c, then

det PA = 2 e(n) fl #<o = 2 e(w)J<'>
'

caSw aSoo
1=1

n

= 2 s(tt)c II alw = c det A

1 = 1
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In the special case A = I, we have det P = det(PI) = c det I = c. Thus (1.33)

holds in this case.

Type II. Suppose now P interchanges the rth and sth rows. Let 77 represent

the permutation which interchanges r and s. Thus, b/ = af'\ Now we compute:

det PA = 2W ii ,> = 2 eWll <l
1 = 1

Now we change the index of summation. Let w = t 17, and sum over t.

det PA =2 (T V) 11 <%) = -2 to 11 <('.,)
1=1

The sign changes since r; is an interchange; thus, if r is even, t 17 is odd. Now the

product FT"= 1 a?(o> is tne same as tne product fl"= 1 {(o (another change of index)

so

det PA = 2 *(t) II {<o = - det A
j=i

In particular, det P = det(PI) = 1, so (1.33) holds in this case.

Type III. Suppose that P adds a times row r to row s. Then b/ = a/ if i = s

and bf a/ + aaf. We now compute

det(PA)=2e("-)n#(o
( = 1

n n

= 2 EW II aid) + 2 (7r) 11 ct*u> aUr) aUsy (1 .34)
1=1 <=i

(*r

The first term on the right is det A. The second term is zero. We can see that by

splitting up the sum into odd and even permutations. Let 77 represent the inter

change of r and s. It is important to note that the odd permutations are just those

of the form 77 17, where n is even. Thus the last term in Equation (1.34) is

2 11 aid)
-

a'n(r) a'Ms) 2 EI i<o
'

a'*w
'

*<>
n even l&r,s nodd t$r,s

=

Z 11 fl(D <&(D fl(s) 2 11 flioKD>0ii(J|(r <(<)>
rt even t^r,s n even l<trts

= 2 II i(i)(o(o a'Ms) a;(s) a'Mr>) = 0
n even l^r,s

Thus, det PA = det A. In particular, detP = l, so (1.33) is verified also for

Type III elementary matrices.
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Now, lemma is a word denoting a logical particle of no particular intrinsic

interest, but of crucial importance in the verification of a theorem. Here

now is the main theorem concerning determinants.

Theorem 1 .7. A matrixM is invertible if and only if detM # 0. det AB =

det A det B for any two matrices.

Proof. Suppose M is an n x n matrix which is not invertible. Then there are

elementary matrices P, ,
. . .

, P0 such that P5 P0M is row reduced and has zero

rows. Thus, by the above lemma

0 = det(P3 P0M) = det P3 det P^i det P0 detM

Since the determinant of an elementary matrix is nonzero, we must have det M = 0.

On the other hand, ifM is invertible, there are elementary matrices P, ,
. . .

, P0 such

that I = Ps P0M. Then

1 = det I = det P, det P5_, det P detM

Thus det M = 0.

Now let A, B be two n x n matrices. If one of A or B is not invertible, neither

is AB, so det AB = 0 and either det A = 0 or det B = 0. In any case

det AB = det A det B

is true. IfA and B are invertible, there are elementarymatrices P, P0 , Q Qo

such that

Ps PA = I =Q QB

Then

Q QoP, PoAB = 0, Q0(P5 PoA)B =Q Q0B = I

Thus

detQ det Q0 det P. det P det(AB) = 1

detQ det Q0 det B = 1

det Ps det P0 det A = 1

Thus again det(AB) = det A det B.

Notice that the formula det AB = det A det B is far from transparent on

the basis of the definition above. In fact, it is not at all derivable without

some information regarding the structure of n x n matrices. We have a

means of computing A-1 for a given invertible matrix A; namely, the process

of row reduction. But we have not given explicitly any formula for the
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inverse. Such is provided by the cofactor expansion of a determinant. This

formula is of theoretical interest, but not of any great computational value.

As far as computations are concerned, the surest and quickest route to the

inverse is the process of row reduction.

Let A be an n x n matrix. The adjoint matrix of an entry of A is the

(n 1) x (n 1) matrix obtained by deleting the row and column of the

given entry (see Figure 1.13). Let A/ be the adjoint matrix of the entry a/.
Then the inverse to the matrix A (if it is invertible) is easily given by the

determinants of the adjoints: the (i,j)th entry ofA-1 is

(-ir^
det A

More precisely we have these formulas (the explicit version of AA_1 =

A-1A = I) known as Cramer's rule:

detA= (-l)'+'a/detV for alii (1.35)
;=i

detA= J(-l)l+'a/detA/ for all; (1.36)
i = l

0 = f (- 1),+V detV for all i # k (1.37)

0 = I (- l)i+V detV for all; = k (1.38)

I

A;'

Figure 1.13
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The verifications of these formulas are simpler than it may seem; they can

be based directly on formula (1 .32). For example, let us verify (1.35). First

fix a row index i. We shall break up the sum in (1.32) into n parts: those

permutations taking / 1, i 2, ...,/ n. Consider, for a fixed column

index the permutations taking i-*j. (That is, those n for which n(i) =j.)
These are precisely the same as all permutations on the indices of the

matrix adjoint to a/ (those permutations which take the integers 1, ...,,

except for i, into the integers 1, . . .

, n, except for;'). Thus the terms appear

ing in the sum (1.32) which have a/ as a factor, are the same as those in

(1.35): we must now verify that the signs agree. Let % be a permutation on

the indices of the adjoint to a/. The corresponding permutation n of

(1, . . .
, n) does the same as t and takes i into j. The number of interchanges

involved in building this permutation is just that for t, with the interchanges

required to send i to j. The last number is j i, which has the same parity

as i+j. Thus, e(n) = ( 1)'+J(r), so the signs of corresponding terms in

(1 .32) and (1.35) also agree. Thus (1.35) is true. We shall leave the verifica

tions of the other formulas to the exercises. (Equations (1.37) and (1.38)

require a small trick.)
Cramer's rule allows for a simple description for solving the equation

Ax = b when A is an invertible n xn matrix. Let A(i) be the matrix obtained

by replacing the rth column of A with the column b. Then the equation

Ax = b, which is the same as x
= A_1b, turns out, according to Cramer's rule

to read

,
detA(i)

t
.

xl = 1 < i < n

det A

This is checked out by unraveling all the definitions and applying the formulas

of Cramer's rule: since x = A_1b,

x-^A-^-^^-iy-detA^
But the summation is just the determinant of the matrix obtained by replacing

the rth column of A with the column vector b! Thus we can solve by taking

quotients of determinants.

Example

31. Solve the equations

x1 + 2x2- x3 = 2

**+ jt2 + 3x3 = 0

2x1 + 2x2+ x3 = l
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The determinant of the matrix

(2
x1 = | det 0

2

1

2

-1

x2 = i detj 1

2

0

1

-r

is easily found by cofactor expansion along the first row :

det A = 1(1 - 6) - 2(1 - 6) - 1(2 - 2) = 5

By Cramer's rule

-1\
= |[2(-5) + 1(6 + 1)]=-|

= l[-2(-5)-(l+2)]=l

x3 = idet(l 1 0)=i[2(0)+l(l-2)]=-i
\2 2 1/

(the determinants are computed by column cofactor expansion).

EXERCISES

33. Find the inverse of these matrices

(a)

(b)

(c)

(d)
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'I 0 -1'

2 1 2

? -1 ly
'4 6 1(
3 1 2

,0 4 0,

34. Solve the equation

Hi)
where A is given by

(a) the matrix in Exercise 33(a)

(b) the matrix in Exercise 33(b)

(c)

A =

(d)

A =

35. Suppose that the n x n matrix A = (a/) has this property:

a/ =0 if i <y

Show that A" = 0.

36. If A is a matrix such that A" = 0 show that I + A is invertible.

PROBLEMS

33. Show that if a linear transformation T has rank n, it is invertible.

Show that if there is a transformation S such that T S = I, T is invertible.

34. Derive Equations (1.35)(1 .38) using the definition of the determinant.

35. Assume this fact about polynomials: A polynomial of degree d has

no more than a" roots. Prove the following assertions:

(a) Let A be an n x n matrix. There are at most n numbers s such

that A + si is not invertible.

(b) The m x n matrix

/l n n2 rV'X

V=(l r2 r22 rrl)
\l r r2 rrl)

has a nonzero determinant if and only if the r( are all distinct. (Hint:

If det V = 0, there is a nonvanishing linear relation among the columns.)

36. Let

Rx1 *9 = n(*'-*0

where x\ . . .
,
x" axe, distinct numbers. Show that the permutation 7t is

even if and only if

f(x'w x")=f(x1,...,x")



76 1. Linear Functions

and similarly w is odd if and only if

f(x"w, ..., **<">) = -f(x\ ...,x")

37. Let A be an invertible n x n matrix. For m<n, let B be an (n m)
x (n m) matrix formed from A by deleting any m rows and m columns.

Show that B is also invertible. (Hint: You need only take m = \, and

proceed by induction.)

38. Let

H t)
Verify that

A2 - (a + d)A + (ad-bc)I=0

that is, that A is a zero of a polynomial of degree 2.

39. The same fact is true for all n, that is an n x n matrix is the zero of a

polynomial of degree n. This is part of a famous theorem of algebra, which

goes like this: If A is any matrix, the polynomial

PA(x) = det(A
-

xl)

is the characteristic polynomial ofA. A is a root of the polynomial equation

PA(x) = 0 (Cayley-Hamilton). That is,

i^(A)=0

Verify the Cayley-Hamilton theorem for (i) a diagonalmatrix, (ii) a triangular
matrix.

1.7 Eigenvectors and Change of Basis

One fruitful way of studying linear transformations on R" is to find direc

tions along which they act merely by stretching the vector. For example,
if a transformation Tis represented by a diagonal matrix

(1.39)
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then T(Ej) = ^E; , where Ex ,
. . .

, EB are the standard basis vectors. Thus

Tacts by stretching by a factor dt along the rth direction:

T(x\ . . .
, xn) = <*!*% + d2 x2E2 + ---

+ dx"En

More generally, suppose we can find a basis \lt . .
., v of vectors in R"

such that T acts by stretching along the direction of v; for each i:

T(yt) = d,yt

Then, if v is any vector, the action of T is easily computed by referring v to

the basis ylt ...,y: if v = s'yt ,
then T(v) = Y,disiyi. T is represented

by the diagonal matrix (1.39) relative to this basis. The process of finding
a basis of vectors along which T acts by stretching is called diagonalization.

Unfortunately, not all transformations can be so diagonalized and this

presents a major difficulty in this line of investigation. For example, a

rotation in the plane clearly does not have any such directions in which it

acts as a stretch. More precisely, let T be represented by the matrix

M-! i)
Then T(x, y) = (y, x). (T is a clockwise rotation through a right angle.)

If v = (a, b) is such that T(a, b) = d(a, b), we must have

da = b db = a

Then d2a = db = -a, and there are no real numbers d, a making this equation

true (except 0).

Nevertheless, there are many transformations which can be analyzed in

this way, and it is our purpose in this section to study the techniques for

doing so.

Definition 12. Let T: R" R" be a linear transformation. An eigenvalue

of T is a number d for which there exists a nonzero vector v such that Tv
= dy.

An eigenvector of T with eigenvalue d is a nonzero vector v such that 7v
= dy.

Proposition 20. // T: R" R" is a linear transformation for which there is

a basis of eigenvectors y1,...,yn with eigenvalues du...,d, respectively,

then for any vector v = 2! *S . T(v) = Z dis'y>
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Proof. Compute T(y) using the fact that T is linear.

Now we find the eigenvalues of a linear transformation T by making use

of this remark: d is an eigenvalue of T if and only if T di is singular (not

invertible). If A is the matrix representing T in terms of the standard basis,

[this condition is verified precisely when det(A
- dX) = 0. Thus the eigen

values of T are just the roots of this equation. Notice that when Tis rotation

by a right angle

detu i) d\ = d2 + l

which has no real roots, thus explaining in another way why this transforma

tion has no eigenvectors. We shall see that when we extend the real number

system to a system in which every polynomial has a root (the complex

numbers), then T can be represented in terms of (complex) eigenvectors.
This is one of the important reasons (particularly in the study of differential

equations, as we shall see) for so extending the number system. Let us now

collect these observations.

Proposition 21. Let T be a transformation on R" represented by the matrix

A. d is an eigenvalue ofT ifand only ifd is a root of the equation

det(A -

fl) = 0

If d is an eigenvalue, the set of eigenvectors corresponding to d is the kernel

ofT-dl.

Proof. Suppose d is an eigenvalue of T. Then there is a v ^ 0 such that

7v = dy, or (T- dl)y = 0. Thus the nullity ofT di is positive, soT di is not

invertible. Thus, det(A -

di) = 0. On the other hand, if det(A
-

dl) = 0, then

Tdl is not invertible, so has a positive dimensional kernel. If v ^ 0 is in the

kernel, (T dl)(y) = 0, or Ty = dy; thus d is an eigenvector of T.

Examples

32. Let T be represented by the matrix

-G D
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Then

*-H27' 1i,)
and det(A - fl) = t2 - 3t + 2. The roots are r = 2, 1. The space

of eigenvectors corresponding to t = 2 is the kernel of

*--(! -?)
that is, the space of all vectors (x, y) such that x -

y
= 0. Thus

(1, 1) is an eigenvector with eigenvalue 2. The eigenvectors corre

sponding to t = 1 lie in the kernel of

C o)
that is, in the space of vectors (x, y) such that x = 0. (0, 1) is such

an eigenvector. Since (1, 1) and (0, 1) are a basis for R2, we have

diagonalized T. Relative to this basis T is represented by the matrix

33. Consider the transformation given, relative to the standard

basis by the matrix

GD
Then det(A

- fl) = r2 - 8r + 16 = (t - 4)2. Thus 4 is the only

eigenvalue of T.

has as kernel {(x, y): x + 2v = 0}, which is one dimensional. Thus

there cannot be a basis of eigenvectors for the only eigenvectors he

on the line x = 2y.

Notice that this example differs from that of a rotation, for there

is no problem with the roots; the difficulty lies with the transformation

itself.
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34. Let T: R3 R3 be given by the matrix

1-1 0 -18\

A= 2 2 4

\ 3 0 8/

Then det(A
- fl) =

- 1
3
+ 3t2 - 4. The roots of

det(A
- tl) = 0

are 2, -1.

Eigenvalue 2:

1-9 0 -18\

A -21= 2 0 4

\ 3 0 6/

The kernel is the set of vectors (x, y, z) such that x + 2z = 0. This

space is two dimensional, so we can find two independent eigenvectors

with eigenvalue 2; for example, vx
= (0, 1, 0), v2 = (2, 0, 1).

Eigenvalue 1 :

1-6 0 -18\

A -(-1)1= 2 1 4

\ 3 0 9/

The kernel is the set of vectors (x, y, z) such that

x + 3z = 0 or x = 3z

2x + y + 4z = 0 or y
= 2z

which is one dimensional. An eigenvector is v3
= ( 3, 2, 1). These

v1; v2 , v3 thus form a basis of eigenvectors, and T is represented by

the matrix

[2 0 0\
0 2 0 (1.40)

\0 0 -1/

relative to the basis yu v2 , v3 .
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Jordan Canonical Form

Notice that in general there are two difficulties with the procedure de

scribed above. The polynomial det(A fl) may not have many real roots,

and it may have multiple roots. As we shall see in the next section the first

difficulty can be overcome by transferring to the complex number system.

Example 34 above demonstrates that the second possibility, that of multiple

roots, may not be severe, whereas Example 33 shows that it can seriously

handicap the diagonalization procedure. Continued study of this situation

becomes quite difficult and we shall not enter into it. The conclusion is that

the typical matrix which cannot be diagonalized is of this form

Id 1 0 0 0 0\

0 d 1 0 0 0

0 0 d 1 0 0

0 0 0 d 0 0

[o 0 d)

representing the transformation

T(x\ . . .

, a") = (dx1 + x2, dx2 + x3,..., dx")

Given any matrix, we can find a basis of vectors (which includes all possible

eigenspaces) relative to which T decomposes into pieces, each of which has

the form (1.41). This is called the Jordan canonical form.

Change ofBasis

Before leaving this subject, let us compute explicitly the formulas which

allow us to change bases in Rn. If {E1; . . .

, E} is a basis for R", then any

x in R" can be written

x = *% + + x"En

uniquely. We shall refer to the w-tuple (x1, . . .

, x") as the coordinate of x

relative to the basisE: {Eu . . .

, E} denoted xE .

Let F: {Fu . . .

, F} be another basis for R". Let xF be the coordinates of

x relative to this new basis. To each set of E coordinatesx we can associate

the F coordinates xF of the point corresponding to xE . In this way we can

write xF as a function of xE . The precise relation is this.
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Proposition 22. Let E: {E1; . .
., E}, F: {F1; . .

., F} be two different
basesfor R". Write the E's in terms of the E's:

E,.= aj%
;=i

The matrix (a/) is called the change of basis matrix, and is denoted AFE.
For any point x in R" we have this relation between its E andE coordinates:

xF
=A/x (1.42)

Proof. Let xE = (x\ . . .
, x"), xF = (y\ ..., y"). Then

x= 2ZxjVj=2Zx4Z"j'F<)

=

2(1^/^^,
= i>'F<

1 = 1

Thus for each i, yl =2"=i aj'xJ> which is the same as (1.42).

Notice that it follows from (1.42) that (AFE)~
*
= AEF. For, given any xf

XF
^

AF XE
^

AF AF XF

ThusA/A/ = I.

Now, if T is any linear transformation on R", it can be represented by a

a matrix, relative to any basis E: {Et ,
. . .

, E}. Let us denote that matrix

byTE:

T(x)E = Tx

Proposition 23. IfE:{Elt..., E}, F: {Ft ,
. . . ,.F} are two bases of R",

and T: R" R" is a linear transformation, we have

Tf = (A/)-1TA/
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Proof.

T(x)F = AFET(x)E =A/Tx =AF*TA/xF

On the other hand, by definition

r(x)F = TfxF

Thus TF = ArTEA/ = (A/r^A/

Examples

35. Let T: R2 R2 be represented, relative to the standard basis E

by

*-G J)
Let F: {(1, 1), (2, -1)} be another basis. Find the matrix Tf .

Now,

*-G -?)

A/=(A/)-i=i(; _2)
Thus

*-G -96 K -?)
/7/3 -i\

\4/3 2/3,/

36. Let T be given, relative to the standard basis E by

1-1 0 -18\

T= 2 2 4

\ 3 0 8/

and let F: {(0, 1, 0), (-2, 0, 1), (-3, 2, 1)}. We have already seen

that F is a basis of eigenvectors for T, with eigenvalues 2,2, 1,

respectively. Thus we may conclude that Tf is given by (1 .40).
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EXERCISES

37. Find a basis of eigenvectors, if possible, for the transformation

represented in terms of the standard basis by the matrix A:

(a)

(b)

(c)

eigenvalues: 2, 3, 1

eigenvalues: 1, 1, 0, 2

eigenvalues: 1, 4

(d) / 1 -1 1^

0/
38. Show that for F: {Fi, . . .

, F} a basis for R", and E the standard basis,

the matrix AEF is just the matrix whose columns are Fi, . . .
, F .

39. Find the matrixA/ for these pairs of bases in R".

(a) F: (1, 0, 1), (0, 1, 1), (1, 0, 0)

E: (0,1, 2), (2, 0,1), (1,2,0).

(b) F: (1,0,0), (2, 0,1), (0,1,0)
E: (3, 1,5), (0,2, 3), (-1,-1,0).

(c) F: (1, 0, 1, 0), (0, 1, 1, 0), (0, 0, 2, 0), (0, 0, 1, 1)
E: (0, 2, 0, 2), (2, 0, 0, 0), (2, 0, 2, 0), (0, 2, 2, 0).

40. Let T: R3 R3 be a linear transformation represented by one of

(a) / 2 0 0\ (b) /l 0 -1\

TE= -1 0 3 TE= 0 1 4

\ 1 0 1/ \2 0 -1/
relative to the standard basis E. Find TE ,

where F is one of these bases

(F as in Exercises 39(a) and 39(b)).
41. If T:R2-rR2 has two independent eigenvectors with the same

eigenvalue, then T is represented by a diagonal matrix in any basis.

PROBLEMS

40. Prove Proposition 20.

41. If T is a linear transformation on R" represented by the matrix A

which has n distinct eigenvalues di,...,d, then

Pa(x) = (- l)"(x -

dt)(x -d2)---(x- d)

and PA(A) = 0 (PA is defined in Problem 39).
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42. Let T be a linear transformation on R". Let E(r) = {v e R" : Tv = rv}.
Show that E(r) is a linear subspace of R" (called the r eigenspace of T).
Show that if r # s, then (r) n (5) = {0}.

43. Suppose A represents a linear transformation on R"with this property :

if ru . . .
, r are the eigenvalues of A, then n = 2*=i dim E(rj). Then

Pa(x) = (- l)"(x -

r,)
d'm <ri>

(x -

rk)
d'm (">

Verify the Cayley-Hamilton theorem for A.

44. Find a matrix with no nontrivial eigenspaces. How would you

expect to prove the Cayley-Hamilton theorem for such a matrix ?

1.8 Complex Numbers

Pythagoras' discovery, that yjl is not the quotient of two integers, was

considered in his day to be a geometric mystery. His conception of numbers

was limited to rational numbers and his desire to measure lengths (to associate

numbers to line segments) led to this unhappy realization: there are some

lengths which are not measurable ! (as the hypotenuse of an isosceles right

triangle of leg length 1). It took a long time for mathematicians to realize

that the solution to this situation was to expand the notion of number. The

general liberation of thought that was the Renaissance led in mathematics to

the possibility of expressing the value of certain lengths by never-ending

decimals, or continued fractions, or other types of infinite expressions. It

was during those days that mathematicians formulated the view that such

expressions represented numbers and served to determine all lengths. Earlier,

Middle Eastern mathematicians were led from certain algebraic problems
to envision extension of the number concept in another direction. As they

observed, quite clearly 1 has no square root; some bold adventurer then

suggested that we contemplate, in our minds, some purely imaginary quantity
whose square would be 1 and treat it as if it were another number. As

this supposition did not contradict any of the known facts concerning the

number system, it could do no harm and might do a great deal of good

(at least in our minds).

Today we need not be so mysterious or cunning in our ways. We need

only recall that there is a 2 x 2 matrix (see Problem 20) whose square is the

negative of the identity. We can thus say quite factually that in the set of

2x2 matrices, - 1 does indeed have a square root. Well, there is also a

5x5 matrix, and an n x n matrix for any n whose square is I, so we should

ask for the smallest algebraic system in which 1 has a square root. The
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complex number system is this system and we shall later derive the remarkable

fact (the fundamental theorem of algebra) : Every polynomial has a root in

the complex number system.

Now, to be explicit, the matrix

-G "D (1.43)

has the property that i2
= -I. The complex number system is the collection

of all 2 x 2 matrices of the form al + bi, where a, b are real numbers.

Definition 13. C, the set of complex numbers is the collection of all 2 x 2

matrices of the form

Proposition 24.

(i) The operations of addition andmultiplication are defined on C.

(ii) Every nonzero complex number has an inverse.

(iii) C is in one-to-one correspondence with R2.

Proof.

(i) (a -b\ (c -d\_(a + c -(b + d)\

\b a)
+

\d c) \b + d a + c J

la -b\lc -d\^/ac-bd -(ad+bc)\

\b a)\d c) \ad+bc ac-bdj

(ii) If

r)
is nonzero, then one of a or A is nonzero, so det M = a2 + b2 = 0, and thus M has

an inverse. By Cramer's rule

M
-,_

1 / a b\

a2 + b2\-b a)

(iii) is obvious, since every complex number is given by a pair of real numbers

and conversely every pair (a, b) of real numbers gives rise to a complex number.
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Cartesian Form of a Complex Number

We need now a notation which is more convenient than the matrix notation,

and we get our cue from (iii) above. The matrices I and i correspond to the

points (1, 0), (0, 1) of the plane and thus form a basis for C. More explicitly

eD-c.;K-i)
= al + bi (1.44)

If we identify the real number 1 with the identity matrix I; and more

generally the real number r with the complex number rl + Oi, then we can

say that every real number is also a complex number. In fact, the complex

system is just the real number system with a square root of 1 tacked on.

(This takes us full circle back to the original conception of that Arabian

adventurer. The difference here is that we now know what we mean by this

procedure and that it produces no inconsistencies.)

Thus, we can suppress the identity matrix in the expression and write a

complex number in the form a + bi. We now recapitulate the relevant facts.

C is the set of all 2 x 2 matrices c = a + bi with a, b real numbers, a is

the real part of c, written a = Re c, and b is the imaginary part, written

b = lmc. And these following rules hold:

i2=-\

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi)(c + di) = ac
- bd + (bd + ac)i

(a + bi)-1^
U~ '

whena2 + Z>2/0
a2 + b2

Polar Form of a Complex Number

Since C is in one-to-one correspondence with R2, we can represent complex

numbers by points in the plane (see Figure 1.14). Addition of com

plex numbers is the same as addition of vectors in the plane. We now

seek a geometric description of multiplication of complex numbers. For

this purpose it is convenient to move to polar coordinates.

Definition 14. Let z = x + yi. The modulus of z, written \z\, is its

distance from the origin:

\z\=(x2 + y2y
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Z = x + iy

u

s' \argz i

0 x

Figure 1.J4

The argument of z, written arg z, is defined for z = 0; it is the angle defining

the ray on which z lies :

arg z = tan -

x

We can write complex numbers in polar form : If a = x + yi has the polar

coordinates (r, 9) then, since x = r cos 9, y = r sin 9, we have

z = r(cos 9 + j sin 9)

(We have moved the i in front of sin 9 for the obvious notational con

venience which results.) The set of points of modulus 1 is the unit circle

centered at the origin. It is the set of all points of the form cos 9 + i sin 9.

We shall sometimes abbreviate this to cis 9. Precisely, cis 9 is the point of

the unit circle lying on the ray of angle 9. Now, let z, w be two complex

numbers,

z = r cis 9 w =

p cis (b

Then

zw = r cis(9)p cis((j>)
= (r cos 9 + ir sin 9)(p cos <b + ip sin <b)
= rp(cos 9 cos (f> sin 9 sin <b) + irp(cos 9 sin <b + cos $ sin 9)
=

rp cis(0 + <b)

Thus we form the product of two complex numbers by multiplying the

modulii and adding the arguments. (This does not make sense if one of the

numbers is zero, but that case is trivial anyway.)
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Notice then, if z = p cis 9, then z2 = p2 cis 29 and more generally

z" = p" cis n9 (1.45)

This observation leads to the fact that it is easy to extract roots. For the

converse of (1.45) is

zllk = p1* cis
j
k

Proposition 25. Let c be a complex number, and k an integer. There are

precisely k distinct solutions to the equation Xk = c.

Proof. Write c in polar form: c = r cis fl. If z = p cis </> is a solution, then

rcisO = c = zk=pk cis<

Thus the modulus of z is the kth root of the modulus of c, and the argument of a

is an angle such that k times it is fl. Well, (l/)fl is such an angle, but so is

(l//fc)(fl + 2tt). In fact, each of the angles

1 (fl), i (fl + 2tt), 1 (fl + 4tt), . . .
,
i (fl + 2(A -

1)tt)

have the property that fc times it is fl. All these angles are distinct, so c = r cis fl

has precisely these k roots :

r1/k cis fl, r1'* cis ,
. . .

,
r1'* cis

k k

Complex Eigenvalues

We shall work extensively with the complex number system in this text.

In fact, we shall discover many situations besides the algebraic one above

where study within the system of complex numbers is beneficial. In par

ticular, let us return to the eigenvalue problems of the preceding section.

We consider C, the space of -tuples of complex numbers. We can define

linear transformations on C just as we did on R". In fact, the entire theory

of linear algebra through Section 1.7 holds over C as well as R". Let

Ej = (0, 0, . . .

, 0, 1, 0, . . .
, 0) (1 in the rth place)
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be the standard basis vectors for C. Again, any linear transformation on

C" is given by a matrix A = (a/) of complex numbers relative to the standard
basis :

T(zi,...,zn)=(i:Jv)...,i^v)

for all (z1, . . .
, z") e C.

Examples

37. Consider the matrix

"(-? J)
as representing a transformation T on C2 relative to the stan

dard basis. Its eigenvalues are the roots of det(A fl) = 0. But

det(A fl) = f2 + 1, so the roots are i, i.

Eigenvalue i:

-(:: ')
The second row is - i times the first, so the kernel of A fl is given

by the single equation ix + y
= 0. An eigenvector is (1, i).

The eigenvalue i has the eigenvector (1, 0- Now, F: {(1,0,
(1, 0} are a basis of eigenvectors for C2, so T becomes diagonalized
relative to this basis :

Tf "(i -)
if

-CM-,-)
then

CM-,)
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38. Consider the matrix

H? i 1)
representing a transformation T on C3 relative to the standard basis.

det(A- fl)= -f3 + f2 - f + 1. This polynomial has the roots

1
, i, i. Since the roots are distinct and each must have a correspond

ing eigenvector, there is a basis of eigenvectors. We now find such

a basis.

Eigenvalue 1 :

A-I=( i -1 |)
\ 2 1 0/

The kernel of A I is found as a linear relation among the columns

(recall Example 18). Such a relation is

C!
- 2C2 - 3C3 = 0

Thus (1, -2, -3) is an eigenvector with eigenvalue 1.

Eigenvalue /:

A-iI=U -i- I

\ 2 1 1 - //

In order to find a relation among the columns we must row reduce-

The result of row reduction is

[o i -i + iM

\0 0 0 /

A solution of the corresponding homogeneous system is found by

taking z3
= 5, then we obtain z2

= 1 - 3i, zt
= -3 + 4i. Thus,

(_3 + 4/, l
- 3/, 5) is an eigenvector with eigenvalue i. Similarly,

we find the eigenvector (-3
- 4i, 1 + 3i, 5) corresponding to the
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eigenvalue i. Thus, T is represented by

relative to the basis

(1, -2, -3), (-3 + 4i, 1 - 3i, 5), (-3 - 4i, 1 + 3/, 5).

EXERCISES

42. Find the inverse of these complex numbers:

(a) 5-3/ (d) 4cis(2/3)

(b) (1-0/2 (e) cis 7

(c) 3 + /

43. Show that z_1 = z if and only if z is on the unit circle.

44. Show that the complex number cis fl represents rotation in the plane
through the angle fl, when considered as a 2 x 2 matrix.

45. Find allMi roots of z:

(a) k = 2,z=-i. (d) k = 3,z = i.

(b) k = 5,z = -l (e) k = 2,z = 3i-4

(c) k=4,z = l+i (f) yt = 3,z = 15 + 5/

46. Find, if possible, a basis of possibly complex eigenvectors for the
transformations represented by these matrices

(a)

O)

G

I i

-i

0

0

PROBLEMS

45. Compute that the matrix

(-!!)
has square equal to I. We have chosen i to be the 2 x 2 matrix

G"J)
so that the correspondence between complex numbers and operations on

R2 will be correct. More precisely, we conceive a complex number in two

ways: as a certain transformation on the plane, and as a vector on the plane.
Given two complex numbers z, w we may interpret their product in two
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ways : composition of the transformations, or the application of the transfor
mation corresponding to z to the vector vv. We would like these two

interpretations to have the same result. If z = a + ib, w = c + id, show
that zw,

c -% 1
and

are all the same under that correspondence.

46. Show that the complex numbers z, z, when considered as vectors in

R2 are independent (unless they are real or pure imaginary).
47. Why do the complex eigenvalues of a real matrix come in conjugate

pairs?

1.9 Space Geometry

In this section we shall introduce the basic notions of three-dimensional

geometry, using vector notation. First of all, as in the plane, we select a

particular point in space, called the origin and denoted 0. That being done

we may refer to the points of space as vectors and think heuristically of the

directed line segment from the origin to the point as a vector. The operations
of scalar multiplication and addition can be defined as on the plane and

expressed in terms of coordinates in much the same way:

(i) If P is a vector and r a real number, rP is the vector lying on the line

through 0 and P and of distance from 0 equal to |r| times the length of the

segment OP. If r > 0, rP lies on the same side of 0 as P; if r < 0, rP lies on

the opposite side.

(ii) if P, Q are two vectors in space, there is a unique parallelogram lying

in the plane determined by P and Q, three of whose vertices are 0, P, Q.

We define P + Q to be the fourth vertex.

Now, we turn to the coordinatization of space. Having chosen a point

as origin, let El5 E2 , E3 be three new points with the property that 0, Eu E2 ,

E3 do not all lie on the same plane (we say the vectors E1; E2 , E3 are not

coplanar). The three lines determined by the vectors E1; E2 , E3 are called

the coordinate axes. Just as in two dimensions the choices of the vectors

Ej, E2 , E3 enables us to put each line in one-to-one correspondence
with the

real numbers.

In three dimensions two lines determine a plane. We shall call the planes
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Figure 1.15

through 0 determined by Et and E2 the 1-2 plane, by Et and E3 the 1-3 plane,

and the plane determined by E2 and E3 is the 2-3 plane (Figure 1.15). These

three planes are called the coordinate planes. Each of these planes can be put
into one-to-one correspondence with R2 just as in the case of two dimensions.

Now, to each point in space we can associate a triple of numbers relative to

these choices in the following way. Let P be any such point. There is a

unique plane through P which is parallel to the 2-3 plane; and this plane
intersects the 1 axis in a unique point. This point has the coordinate x1

relative to the scale determined by E^ We shall call x1 the first coordinate

of P. The second, x2, is found in the same way : by intersecting the plane

through P and parallel to the 1-3 plane with the 2 axis. Finally we find

the third coordinate x3 similarly, and associate the triple (x1, x2, x3) to P.

In this way we put all of space into one-to-one correspondence with R3,

dependent upon the choice of vectors Els E2 , E3 , called a basis for space.

The expression in terms of coordinates of the operations of addition and

scalar multiplication are precisely the same as in R2 (no matter what basis

is chosen) :

r(x\ x2, x3) = (rx1, rx2, rx3)

(x1, x2, x3) + (y1, y2, y3) = (x1 + y\ x2 + v2, x3 + y3)
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There is no need to check that these formulas correspond to the geometric

descriptions given above; we need only refer to the computation in the plane.
When we are interested in the pictorial representation of problems of

three-dimensional Eculidean geometry it is best if we consistently use a

particular coordinatization. For this purpose we select the "right-handed

rectangular coordinate system"; where the coordinate axes are mutually

perpendicular and the order 12 3 is that of a right-handed screw (see

Figure 1.16). It is common in particular problems to refer to the coordinates

by the letters (x, y, z) rather than (x1, x2, x3). We shall use the numbered

coordinates when it is more convenient to do so.

Inner Product

Now, the basic notions of Euclidean geometry are length and angle. It

will be of importance to us to derive expressions for these in terms of co

ordinates. Consider first the length of the line segment OP between the origin
and the point P with coordinates (x, y, z). This can be easily computed

by use of the Pythagorean theorem (consult Figure 1.17). Let P' be the

point of intersection with the xz plane of the line through P and parallel
to the v axis. Then OPP' is a right triangle, so

|0P|2= |0P'|2+ |P'P|2

Figure 1.16
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>

P{x,y,z)

.si,-

Figure 1.17

Letting P" be the point of intersection with the x axis of the line through P'

and parallel to the z axis, we obtain

|0P|2 = |0P"|2 + |P"P'|2 + |P'P|2

But now |0P"|2 = x2, |P"P'|2 = z2, |P'P|2 = y2, so

|0P| = [x2 + v2 + z2]1/2

Now, suppose P(x, y, z), Q(a, b, c) are any two points in space. By

definition of addition, P is the fourth vertex of the parallelogram three of

whose vertices are 0, P
- Q and Q. Thus, the side through P and Q has

the same length as the side through P Q and 0, so

IPQI = l(P - Q)0| = [(* - a)2 + (y - b)2 + (z- c)2]1/2 (1.46)

Finally, we can compute the angle between P and Q by the law of cosines

(consult Figure 1.18); if 9 is that angle, then

|PQ|2 = |0P|2 + |0Q|2 - 2|0P| |0Q| cos 9

In coordinates,

(x - a)2 + (y- b)2 + (z- c)2 = x2 + y2 + z2 + a2 + b2 + c2

-2(x2 + y2+z2)112

x(a2 + b2 + c2)1/2cos9



which reduces to

COS0 =
xa + yb + cz

(x2 + y2 + z2)ll2(a2 + b2 + c2)112

1.9 Space Geometry 97

(1.47)

The form in the numerator thus has some special importance: it together

with the notion of length determines angles. It is called the inner product

of the two vectors P, Q.

Definition 15. Let P, Q be two vectors in space. Their Euclidean inner

product, denoted <P, Q>, is defined as |P| |Q| cos 9, where 9 is the angle

between P and Q. In coordinates, P = (xu yu Zj), Q = (x2 , y2 , z2),

(P,Q} = x1x2 + y^2 + zxz2

Propositions 26. The nonzero vectors P and Q are perpendicular ifand only

i/<p,Q> = o.

Proof. P and Q are perpendicular if and only if the angle fl between them is a

right angle, fl is a right angle if and only if cos fl = 0, and this holds precisely

When <P, Q> = 0.

A plane through the origin is the linear span of two vectors. If N is a

vector perpendicular to such a plane n> then 11 is iven by the ecluat'on

n=<x.N>=o



98 1. Linear Functions

More generally, if p is a point on a plane (not necessarily through the origin)
and N is orthogonal to FJ, F] is given by the equation

<x
-

p, N> = 0

A line through the origin is the linear span of a single vector, and can be

expressed by two linear equations (since a line is the intersection of two

planes).

Examples

39. Find the equation of the plane through (1, 2, 0) spanned by the

two vectors (1, 0, 1), (3, 1, 2). If N = (n1, n2, n3) perpendicular to

this plane we must have

<N,(1,0, l)> = n1+3 = 0

<N, (3, 0, 2)> = 3k1 +n2 + 2n3=0

A solution of this system is (1,-1,-1), so we may take

N = (1 , 1, 1). Then the equation of the plane is

<x- (1,2,0), (1, -1, -1)> = 0 or x-y-z+l=0

40. Find the equation of the plane through P = (1, 0, -

1), Q =

(2, 2, 2), R = (3, 1, 1). If N is perpendicular to the plane, we have

<N, P - R> = 0 <N, Q -

R> = 0

Letting N = (m1, n2, n3), we obtain this system of equations:

-2n1-n2-2n3=0
- n1 + n2 + n3 =0

which has a solution N = (7, 4. 3). Thus the equation we seek is

<x - N, R> = 0, or l(x -

3) + 4(y -

1) + 3(z - 1) = 0 or

Ix + 4y + 3z = 28

41. Find the equations of the line L through (4, 0, 0) and perpen
dicular to the plane in Example 40. If x is on L we must have

<x - (4, 0, 0), P -

R> = 0 <x - (4, 0, 0), Q -

R> = 0
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so we may take these as the equations :

2x + y + 2z = 8

-x + y + z = -4

Vector Product

Given two noncollinear vectors vx, v2 in space, the set of vectors perpen

dicular to v1; v2 is a line. We shall now develop a useful formula for select

ing a particular vector on that line, called the vector product vt x v2 .

IfN is on that line, and x is in the linear span of vt and v2 ,
we have

<x, N> = 0

On the other hand, since x, vx, v2 are coplanar we have

Now there is a uniquely determined vector N such that

for all x e R3. This is easily seen using coordinates. Write

Vl
= (V, vt2, vt3), y2

= (v2\ v22, v23), x = (x1, x2, x3)

Then

(x \ Ix1 x2 x3

2

vt3

V2/ W 22 1

det( Vj ) = detj V vx2 v^

1 .,2 .,3

= XKV.W - V3V22) - *W23 ~ lW)

+ x3(v11v22-vl2v21)

= (ix1, X2, X3), ((Vl2V23
-

1-!V), (V.W
- V^W),

(v.W-v.W))}
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Definition 16. Let v = (v1, v2, v3), w = (w1, w2, w3) be two vectors in R3.

The vector product v x w is defined by

V x w = (v2w3 - v3w2, v3w1 - v1w3, v1w2 - v2wx)

Proposition 27.

(i) <x, v x w> = det vl forallxeR3.

(ii) v x w = w x v.

(iii) v x w is orthogonal to v and w.

(iv) The equation of the plane through the origin spanned by v and w has

the equation <x, v x w> = 0.

The proof of this proposition is completely contained in the preceding
discussion. The basic property of the vector product is the first; it follows,
for example, that for any three vectors u, v, w

<u, v x w> = <u x v, w> = <v, w x u> = <v x w, u>

Notice that if v, w are collinear, v x w = 0. If they are not collinear, the
ordered basis u v vxwis right handed (see Figure 1.19). The following
proposition gives an important geometric interpretation of the magnitude
of v x w.

Proposition 28. Let u, v, w be three noncollinear vectors.

(i) The area of the parallelogram spanned by u and v is ||u x v||.

wx v

Figure 1.19
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(ii) The volume of the parallelepiped spanned by u, v, and w is

|detQ '

Proof.

Step (a). The first step is to verify (ii) in case the vectors u, v, w are mutually

perpendicular. In that case we must show that

det/ v J
= ||u||

-

||v||- ||w||

This follows easily from the multiplicative property of the determinant. First we

note that

/u\ /<u,u> 0 0 \

v (u, v, w) = 0 <v, v> 0

\w/ \ 0 0 <w,w>/

since the (i,j)th entry is the inner product of the rth row of the first matrix with the

;th row of the second (see Problem 49). Thus,

detjv j =detjv )(u, v, w) = ||u||2||v||2||w||2

Step (b). In particular, if u, v are perpendicular, then u, v, u x v are mutually

perpendicular, so

(u
x v\

u J

= llu x vll ||u||- ||v||

so ||u x v|| = ||u|| ||v||, when u is perpendicular to v.

Step (c). Now we prove part (i) in general. Let fl be the the angle between u

and v (see Figure 1.20). Then the area of the parallelogram spanned by u and v

is the product of the base and the height of the base:

area = ||u||a = ||u|| ||v||sinfl
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Now the vector u x (u x v) is orthogonal to u and u x v, so lies in the plane spanned

by u and v and is orthogonal to u. We have

sin =cosg-fl)
<v, u x (u x v)>

HTll l|U X (U X T)||

Since u and u x v are orthogonal, by Step (b) we have ||u x (u x v) || = ||u || ||u x v||
Thus

area = ||u
<v, u x (u x v)>

||r|| Nu x (u x v)||

<U X V, U X v>
= l|u|iVrrr ^-

= lluxv||
u uxy

Step (d). To prove part (ii) we refer to Figure 1 .21 . The volume of the parallele

piped spanned by u, v, w is the product of the area of the base and the altitude:

volume = ||u x y\\b = ||u x v|| ||w||sin <j>

Since u X t is orthogonal to the u, v plane,

sin
, (tt \ |<w, u>
<6=C0S - 4>\ =--! _

\2 7 llwll-Hu

xv>|

xvll

u X(u X v)

Figure 1.20
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x V

Thus

volume = |lu x v|

Figure 1.21

.. <w,uxv> /w\
l|w||-n-T7]

-= det u

w uxt /

A final equality which will prove useful is this :

||uxv||2=||u||2||v||2-<u,v>2

This follows easily from the above arguments :

||uxv||2=||u||2||v||2sin24>
= ||u||2||v||2(l-cos20)
= llu||2| <u, v>2

since the angle between u and v is (b.

EXERCISES

47. Which pairs of the following vectors are orthogonal?

vx=(2, 1,2), t,=(3, -1,4), v3=(7,0,5), v* = (6, -2,5)

t5= (1,3,0), v6= (0,0,1), tt=(-15,5,21)
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48. Find the vector products v, x V/ for all pairs of vectors given in

Exercise 47.

49. Find a vector v such that

<v,v,>=2 <v,v2> = -l <v,v3>=7

where vi, v2 , v3 are given in Exercise 47.

50. Find the equation of the plane spanned by the vectors (a) Vi, y6 ,

(b) v2, v5, (c) t5, v6, (d) v2, t4, where the v, are given in Exer

cise 47.

51. Find the equation of the line spanned by the vectors given in

Exercise 47.

52. Find the equation of the plane through (3, 2, 1) and orthogonal
to the vector (7, 1, 2).

53. Find the equation of the line through (0, 2, 0) and orthogonal to the

plane spanned by (1, -1, 1) and (0, 3, 1).
54. Find the equation of the line through the origin and perpendicular

to the plane through the points

(a) E,,E2,E3

(b) (1,1, 5), (0,0, 2), (-1,-1,0)

(c) (0, 0, 0), (0, 0, 1), (0, 1, 0)
55. Find the equation of the line of intersection of the two planes,

(a) determined by (a), (b) of Exercise 54.

(b) determined by (a), (c) of Exercise 54.

(c) determined by (b), (c) of Exercise 54.

56. Find the plane of vectors perpendicular to each of the lines deter
mined in Exercise 55.

57. Let A be a 3 x 3 matrix. Show that

(a) if the rows of A lie on a plane (but not on a line), the set of solu
tions of Ax = b forms a line, or is empty.

(b) if the rows ofA lie on a line, the set of solutions of Ax = b forms
a plane, or is empty.
58. Show that ||v x w|| = ||v|| ||w|| sin fl, where fl is the angle between

the two vectors v and w.

59. Is the vector product associative; that is, is

(u x v) x w = u x (v x w)

always true?

60. If v, w are two noncollinear vectors show that the three vectors

v, v x w, v x (v X w) are pairwise orthogonal.

PROBLEMS

48. Prove the identities of Proposition 27.

49. Let vj, v2, v3 be three vectors in R3. Let A be the matrix whose
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rows are Vi, v2 , v3 and B the matrix with columns Vi, v2 , v3 . Show that

(a) the (i,/)th entry of AB is <v, , Vj>.

(b) det A = det B.

50. Let P be given by the coordinates (x, y, z) relative to a choice Ei, E2 ,

E3 of basis for space. Show that the point of intersection of the line

through P parallel to the Ei axis with the 2-3 plane has coordinates (0, y, z).

1.10 Abstract Notions of Linearity

There are many collections of mathematical objects which are endowed

with a natural algebraic structure which is very reminiscent of R". To be less

vague, there is defined, within these collections, the operations of addition

and multiplication by real numbers. Furthermore, the problems that

naturally arise in these other contexts are reminiscent of the problems on R"

which we have been studying. The question to ask then, is this: does the

same theory hold, and will the same techniques work in this more general

context ? We shall see in this section that for a large class of such objects

(the finite-dimensional vector spaces) the theory is the same. We shall see

later on that in many other cases, the techniques we have developed can be

modified to provide solutions to problems in the more general context.

First, let us consider some examples.

Examples

42. If/ and g are continuous real-valued functions on the interval

[0, 1], then we can define the functions /+ g, cf as follows:

(f+g)(x)=f(x) + g(x)

(cf)(x) = cf(x)

Clearly,/+ g and c/are also continuous. Thus we see that operations

of addition and scalar multiplication are defined on the collection

C([0, 1]) of all continuous functions on the interval [0, 1].

43. In the above example, if/ and g are differentiable, so are/+ g

and cf. Thus the space ^([O, 1]) of functions on the interval [0, 1]

with continuous derivatives also has the operations of addition and

scalar multiplication. Notice that the operation of differentiation

takes functions in CHC0, 1]) into C([0, 1]): if /is in CH[0, 1]) it

has a continuous derivative, so /' is in C([0, 1]). Furthermore,
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differentiation could be described as a linear transformation:

if+g)'=f'+3'

(cf)' = cf

So is, by the way, integration a linear transformation:

\if+g)=lf+U
l(cf) = ctf

The fundamental theorem of calculus says that differentiation is the

inverse operation for integration:

(J/)' =/

These remarks may strike you as merely a curious way of describing the

well-known phenomena, but the implied point of view has led to a wide

range of mathematical discoveries. The subject of functional analysis which

was developed early in the 20th century came out of this geometric-algebraic

approach to long standing problems of analysis.

Examples

44. If S and T are linear transformations of R" to Rm, then so is

the function S + T defined by:

(S + T)(x) = S(x) + T(x)

We can also multiply a linear transformation by a scalar:

(cS)(x) = cS(x)

Thus the space L(R", Rm) of linear transformations of R" to Rm has

defined on it operations of addition and scalar multiplication.

45. We have already observed (Section 1.6) that the collection M"

of n x n matrices has defined on it these two important operations.
In fact, we used, in an essential way, the fact that when we viewed

M" this way it was just the same as R"2.

These examples, together with R", lead to the notion of an abstract vector

space : a set together with the operations of addition and scalar multiplication.
We include in the definition the algebraic laws governing these operations.
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Definition 17. An abstract vector space is a set V with a distinguished
element, 0, called the origin, on which are defined two operations:
Addition. If v and vv are elements of V, then v + vv is a well-defined element

of V.

Scalar multiplication. If v is in V and c is a real number, cv is a well-defined

element of V. These operations must behave in accordance with these laws :

(i) v + (vv + x) = (v + vv) + x,

(ii) v + vv = vv + v,

(iii) t> + 0 = v,

(iv) c(v + w) = cv + cw,

(v) ct(c2 vv) = (Ci c2)w,

(vi) \w = vv.

The preceding examples are all abstract vector spaces; the verifications

of the required laws are easily performed. We now want to investigate the

extent to which the ideas and facts discussed in the case of R" carry over to

abstract vector spaces. First of all, all the definitions carry over sensibly
to the abstract case if we just replace the word R" by the words an abstract

vector space V. Thus we take these notions as defined also in the abstract

case : linear transformation, linear subspace, span, independent, basis, dimension.

Now there is one bit of amplification necessary in the case of dimension.

We have until now encountered spaces of only finite dimension.

Example

46. Let R be the collection of all sequences of real numbers. Thus

an element of I?00 is an ordered oo-tuple,

(x1,*2,. ..,*",...)

R00 is an abstract vector space with these operations:

(x1,x2,...,x,...) + (y1,y2,...,yn,...)
= (x1 + y1, x2 + y2, . . .

,
x" + y", . . .)

c(x\ x2,...,xn,...) = (ex1, ex2, ...,cx",...)

Now R has an infinite set of independent vectors. Let be the

sequence all ofwhose entries are zero but for the nth, which is 1 . This

entire collection {Eu ...,,.. .} is an independent set. For if

there is a relation among some finite subset of these, it must be of the

form

c1^ + + ckEk = 0
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(of course, many of the c's may be zero). But

c1El + + ckEk = (c1, c2,..., ck, 0, 0, . . .)

so if this vector is zero we must have c1 = c2 = = ck = 0. Thus

indeed the set {Eu ...,,...} is an infinite independent set on/?.

We now make the following restriction to the so-called finite-dimensional

vector space; and we shall see that all of the preceding information about R"

holds also in this more general case.

Definition 18. A vector space V is finite dimensional if there is a finite set

of vectors vl,...,vk which span V. That Rx is not finite dimensional

follows from some of the observations to be made below. It can also be

verified in the terms of the above definition (see Problem 53). The important
result about finite-dimensional vector spaces is that they are no different from

the spaces R".

Proposition 29. Let V be a finite-dimensional vector space of dimension d.

Ifvt,...,vdisa basis for V, every vector in V can be expressed uniquely as a

combination of vu . . .
, vd:

v = x1v1 + + xdvd

(x1, ...,xd) is called the coordinate of v relative to the basis vlt...,vd.

The correspondence v (x1, .

.., xd) is a one-to-one linear transformation

of V onto R*.

Proof. The definition of basis (Definition 6) makes this proposition quite clear.

We leave the verifications to the reader (Problem 54).

What is not so clear is that every finite-dimensional vector space has a

basis, and that every basis has the same number of elements. However,
once these facts are established the above proposition serves to reduce the

general finite-dimensional space to one of the R", and the results of Section

1.3 through 1.6 carry over.

Proposition 30. Every finite-dimensional vector space V has a finite basis,
and every basis has the same number ofelements, the dimension of V.

Proof. Suppose V is finite dimensional. Then V has a finite spanning set. Let

{vi, ..., vd} be a spanning set with the minimal number of vectors; by definition V

has dimension d. We shall show that {vi, ..., vd} is a basis.
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Since {vu ..., vd} span, every vector in V can be written as a linear combination

of these vectors. We have to show that there is only one way in which this can be

done. Suppose for some vector v we have two different such ways :

= x'Vi H h x*vd = yhi ++ y"vd (1 .48)

Then

(x>
-

y>i + + (xd -

yd)vd = 0

Since these two expressions differ we must have xJ # y' for some j. Thus

Now this equation says that vj is in the linear span of the a- 1 elements vit ...,

Vj-i, fJ+i, . . .
, vd, so these elements serve to span all of V also. But this contra

dicts the minimal assumption about d. Thus it must be impossible to express v

in terms of Vi, . . .
, vd in two different ways. Hence {vL, . . .

, vd} is a basis.

That any two bases have the same number of elements follows easily from

Proposition 28 (see also Problem 55). Let T: V^>Rd be the linear transfor

mation associating to each vector its coordinate relative to the above basis

{vu...,vd}. If {wu...,wd} is another basis, let S: KR be the same

coordinate mapping relative to this basis. Then L = S T~
1
is a one-to-one

linear mapping of Rd onto R3, so p(L) = 5, v(L) = 0. Thus (rank + nullity =

dimension) : 5 = d.

PROBLEMS

51. Show that for any finite set of vectors S
= {vi, ...,vk] in R", there is

a vector weR which does not lie in their linear span [S]. (Hint: Let

v' represent the first (k + l)-tuple of entries in v. Since v/, . . .
, v/ cannot

span Rk+1, there is a vector w' in Rk+l which cannot be written as a combin-

nation of v/, . . .
, vt'. Let w = (w', 0, . . .).)

52. Are the vectors E,, . . .
, E ,

. . . in R described in Example 43 a basis

for Ra ?

53. Let Ro" be the collection of those sequences of real numbers

(x1, x2, . . .

, x", . . .) such that x"
= 0 for all but finitely many n. Then R0^

is a linear subspace of R". Show that the vectors Ei ,
. . .

, E ,
. . . are a

basis for i?0.

54. Prove Proposition 29.

55. Prove, by following the arguments in Section 1.4, that any two bases

of a finite-dimensional vector space have the same number of elements.
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56. Let V, W be two vector spaces. Show that the collection L(V, W) of

linear transformations from V to W is a vector space under the two opera

tions :

(a) if c g R, L e L(V, W), (cL)(x) = cL(x),

(b) if L, L' 6 L(V, W), (L + L')(x) = L(x) + L'(x).

57. What is the dimension of L(R", Rm)l

58. Show that a vector space V is finite dimensional if there is a one-to-one

linear transformation of F0 into J?" for some n.

59. Show that a vector space F is finite dimensional if there is a linear

transformation T of R" onto V for some n.

60. Verify that the collection P of polynomials is an abstract vector space.

For a positive integer n, letP be the collection of polynomials of degree not

more than n. Show that P is a linear subspace of P. Show that P is not

finite dimensional, whereasP is. What is the dimension ofP1

61 . Let x0 ,
. . .

, x be distinct real numbers and c0 ,
. . .

, c another collec

tion of real numbers. Show that there is one and only one polynomial p in

P such that

p(xt) = ct 0<Li<,n

(Hint: Let L:P J?"+1 be defined by L(p) = (p(x0) p(x)). Show

that L has rank n + 1 .)

62. Let g be a polynomial, and define the function G: P P:

G(p) =pg

Show that G is a linear function. Describe the range and kernel of G.

63. Define Dk:P^-P: Dk(p) = dfy/dx!'. What are the range and kernel

of A?

64. Let x0 e R, and let c0 ,
. .

, ck be given numbers. Show that there is

one and only one polynomial p inP such that

\ dp dkp
p(x0) =d0 d~t(-X)=Cl'""dxk^

=

C"

(Hint: Use the same idea as in Exercise 61.)
65. Does Dk:P-+P have any eigenvalues?

66. Show that C([0, 1]) is not a finite-dimensional vector space.

1.11 Inner Products

The notion of length, or distance, is important in the geometric study of

planar and spatial configurations. In Section 1.3 we studied these concepts
and related them to an algebraic concept, the inner product. From the

point of view of analysis also it is true that these concepts are significant:



1.11 Inner Products 111

it is in terms of distance that we can express "closeness" and in particular
"convergence." By analogy with R3 we define the inner product in R",
and in terms of it, distance. While we are here we shall, in this section,
introduce some topological terms.

Definition 19. The inner product of two vectors v = (v1, ..., v"), w =

(vv1, . . .
, vv"), denoted by <v, w> is defined as

<v, w> = v'w'

We shall say that v is orthogonal to w if <v, w> = 0. The distance d(v, w)
between v and w is defined by

d(y,yv) = {X(vi-wi)2-\1'2

The modulus |v| of a vector v is the distance between v and 0,

\y\ = d(y,0)=V(vt)2-l1<2

Distance in R" behaves much as it does in R2 and R3; in particular, the

Pythagorean theorem holds:

d(y, w)2 = d(y, x)2 + d(x, w)2 (1 .49)

when <v w, w x> = 0. In any event, two points are no further apart

than the sum of the distances from a third,

d(v, w) < d(y, x) + d(x,yv) (1 .50)

These facts will be verified in the problems.

Topological Notions

Definition 20. The ball in R" of radius R > 0 and center c, denoted B(c, R),

is the set of all points whose distance from c is less than R:

B(c,R)= {xeR":d(x,c)<R}

A set S is said to be a neighborhood of a point c if it contains some ball

centered at c. A set V is said to be open if it contains a neighborhood of

each of its points.

Thus, a set S is a neighborhood of c if there is some R (presumably very
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small) such that

d(x, c) < R implies x e S

A set U is open if for every c e U, there is an R such that U => B(c, R). Notice

that any ball is open. For suppose xeB(c,R). Then d(x, c) < R, so

R - d(x, c) > 0. Now B(c, R) contains the ball of radius R - d(x, c)

centered at x. For if y is a point in that ball, then by (1 .50),

d(y, c) ^ d(y, x) + d(x, c)<R- d(x, c) + d(y, c) = R

Here is a collection of formal properties of the collection of open sets.

Proposition 31.

(i) R" is open.

(ii) IfUu..., U are open, so is Ut n n U.

(iii) // C is any collection of open sets, then the set of all points belonging

to any of the sets in C is open. (This set is denoted [j U).

Proof.

(i) Clearly, R" contains a ball centered at every one of its points.

(ii) Suppose Ui,..., / are open, and x is in every U, . Then there are Ri

R such that Ui => B(x, Ri), . . .
, U => B(x, if). Let R = min[.Ri, . . .

, Rn]. Then if

d(y, x)<R,y is in each B(x, Ri) so is in each Ut . Thus y is in Ui n n U . In

particular, Ui n n U => B(x, R). Thus Ui n n U is a neighborhood of

any one of its points x, and is thus open.

(iii) Suppose C is a collection of open sets. If x is in any one of them, say U,

then since U is open there is an R such that U => B(x, R). Thus, \JV ec U => B(x, R).

Thus [Jvee Uisa neighborhood of any one of its points, so is open.

Many of the concepts a mathematician studies are so-called local concepts:

They happen in a neighborhood of a point, or are determined by what goes
on near a point; far behavior being irrelevant. Differentiation is thus local,

whereas integration is not. The importance of open sets is that it is precisely
on such sets that we should study these local concepts, since their definition

at a point depends on behavior in some neighborhood of the point.
If a set is open its complement, the set of all points not in the given set, is

said to be closed. Thus, S is a closed subset of R" if R" - S = {x eR" : x S}
is open. Corresponding to Proposition 31 we have this proposition about

closed sets.

Proposition 32.

(i) R" is closed.

(ii) If Su . . .
, Sn are closed, so is S^v u S.
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(iii) IfC is a collection of closed sets, then the set ofallpoints common to all

the sets of C is closed. (This set is denoted [)s 6 c S).

Proof. Problem 67.

Notice that there are sets which are both open and closed. There are not

many of them. R" and 0 are the only ones. There are also sets which are

neither open nor closed, and there are many of them. For example, an

interval is open in R1 if it contains neither end point, closed if it contains

both, and neither open nor closed if it contains only one end point.
We are acquainted with the notion of "dropping a perpendicular" in the

plane. That is, if / is a line and p is a point not on the line, then we can drop

a perpendicular from p to / as in Figure 1 .22. The point p0 of intersection

of the perpendicular with / is the point on / which is closest to p. A more

sophisticated way of describing this situation is to say that p0 is the orthogonal

projection of p on /. The concept of orthogonal projection generalizes to R"

and will prove quite useful there. In order to discuss this problem, we shall

generalize even further.

Definition 21. A Euclidean vector space is an abstract vector space V on

which is defined a real-valued function of pairs of vectors, called the inner

product, and denoted <, >. The inner product must obey these laws:

(i) (v, v} > 0. If (v, v} = 0, then v = 0.

(ii) <v, w> = <w, v}.

(iii) (av, vv> = a(v, vv>.

(iv) <>! + v2 , w> = <!>!, w> + <v2 , w}.

\

\

*p
\

\

\

\

\

\

\

\

\

\

\ ^

\

\

Figure 1.22
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It is clear that R" is a Euclidean vector space when endowed with its inner

product. The space C[0, 1 ] of continuous functions on the unit interval is a

Euclidean vector space with this inner product:

</, 9> = (f(t)g(t) dt

We leave it to the reader to verify that the laws (i)-(iv) are obeyed. It is

interesting that the laws (i)-(iv) are all that is essential to the notion of inner

product ; that is, any such function behaving in accordance with those laws

will have all the properties of an inner product. Despite the inherent interest

in this
"

metamathematical
"

point, we shall not pursue it further, but take

it for granted that the above definition has indeed abstracted the essence of

this notion.

In terms of an inner product on a vector space we can define the notions of

length and orthogonality:

llll = [<, t>>V'2

v 1 vv if and only if <y, vv> = 0

The important bases in a Euclidean vector space are those bases whose

vectors are mutually orthogonal. More specifically, we shall call a set

{Elt ...,} in a Euclidean vector space V an orthonormal set if

||,|| = 1 for all i

Et 1 Ej for all i # /

If the vectors Eu ..., E span V we shall call them an orthonormal basis.

(Any orthonormal set of vectors is independentProblem 68.) The basic

geometric fact concerning orthonormal sets is the following:

Proposition 33. Let V be a Euclidean vector space and {l5 ...,} an

orthonormalset in V. For any vector v in V, the vector v0 = v
-

?= x <t>, jE;> Et
is orthogonal to the linear span Sof{E1,...,En}.

n

Proof. Let w = 2 Ci E, be in S. Then
i = i

<v, w> = <y -

2 <v, ,> <, , w> = iv, w> -

J <t>, E,> <, , w>
'=i i=i
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Now

< , w> = <, , 2 CjEj> = 2 c./ <, , ,> =

c,
j=i j=i

ft n

<t>, w> = <y, 2 ctE,y = 2 c, <y, (>
1=1 1=1

Thus

<t>, w> = 2 c, <v, E,y
-

2 <y, -Ei) c, = o
1 = 1 1 = 1

Theorem 1.8. Let V be a Euclidean vector space, and let {Eu ...,}
be an orthonormal set in V. For any vector v, let

v0= <<;,,>,
i=l

Then

(i) \\v\\2=\\v-v0\\2+\\vQ\\2;

(ii) for any vv in the linear span of {Eu ...,},

\\v-v0\\2<\\v-yv\\2

Proof.

(i) II" II2 = <v , v~> = <(y - v0) + v0,(v- v0) + v0>

= \\v-v0\\2+ \M\2+ <.V0,V-Vo> + <V-V0,Vo>

The last two terms are zero by the preceding proposition, since v0 is in the linear

span of {Ei, ..., E}.

(ii) ||y w||2 = <y vv, v vv>

= <,v v0 + v0 w,v Vo + v0 wy

= llw foil2 + \\v0-w\\2+<v-v0,Vo-w) + <Vo-w,v-v0y

Again, the last two terms are zero for both v0 ,
w and thus also v0 w is in the linear

span of{,,...,}. Thus

||t,_vv||2= ||_0||* + ||t;o-w||2> Hf-Uoll2

so (ii) is proven.



116 1. Linear Functions

Gram-Schmidt Process

Notice that v v0
= v' is orthogonal to the linear span S of {Eu ..., }.

v0 is the vector in Swhich is closest to v; it is called the orthogonal projection
of v into S. It seems, by Theorem 1.8 that one needs an orthonormal basis

in order to find orthogonal projections; the following proposition gives a

procedure for obtaining orthonormal basis for finite-dimensional vector

spaces, and thus with it, orthogonal projections.

Proposition 34. Let Fu ...,F be a basis for a Euclidean vector space V.

We can find an orthonormal basis Eu ...,Enso that the linear span ofEu ...,

Ej is the same as the linear span ofF1, . .

., Fjfor allj.

Proof. The proof is by induction on n. If n = 1, we need only take Ei =

NPiir'pi.

Now in general, let Fi, . . .
, F be a basis for a Euclidean vector space V. Then

the linear span W of P\, . . .

, F-L is a Euclidean vector space also, and we can

apply the proposition to W by the inductive hypothesis. Let Eu ..., E-i be an

orthonormal basis with the required properties. Now, we must find a vector En

such that

11^11 = 1

(E,E,)=0 all/^K

Fn is in the linear span ofE, . . .

, E

IfE is a vector that fulfills the last two conditions, then we can takeE = ||^ \\~1E .

Thus we need only find a vector filling the last two conditions. That is easy ; take

En =F- 2(Fn,E3)Ej
ji

Then, for i < n,

( , E,) = (F , Ed - 2 (Fn , Ej)(Ej , E,)
J<n

= (Fn , E,)
-

(F , E,)(E, ,,)= 0

Furthermore,

F=+ >Z(F-,Ej)Ej

so the last two conditions are fulfilled and the proposition is proven.

The proof of this proposition provides a procedure for finding orthonormal
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bases in an Euclidean vector space, known as the Gram-Schmidt process. It

goes like this:

First, pick any basis Fu . . .
, F of V. Take

1 = 11^111-^1

Then choose 2 = F2
-

(F2, E^)Elf and divide by the length to find 2,

and so forth. If Eu . .

., Ej are found, take

E+i = Fj+i
~

(Fj+i, i)i
-

(FJ+l, E2)E2
- -

(FJ+l, ,);

and let J + 1
be the vector of length one collinear with+i.

Examples

47. Apply the Gram-Schmidt process to this basis ofR3:

F1 = (1,0,1)

F2 = (3, -1,2)

F3 = (0, 0, 1)

Take

Fx /J_ _1_\

El"lFj'V2*0,>/2/

E2 = a_1)2)_(3.^ + (-i).o + 2.ii)(-L,o,ii)

-(3. -1.2)- (|,0.|) - (|. -1.^)
Then

E2 = {i) [r~1'^r)
=

\Wr2'~\v '(up)

E3 = (0, 0, 1)
-

-^ (-^,0, -^) + -^3 (^75.

"(7) '(W71)
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and finally

- I ~2 ~3 2 \

3 \(17)1/2'(17)1/2'(17)1/2j

48. Find an orthonormal basis for the kernel of X: R4 -* R,

X(x\ x2, x3, x4) = x1 + x2 + x3 + 2x4.

First of all, let us pick a suitable basis for K(X); that is,

(1, 0, 0,
-

1/2), (0, 1, 0, -

1/2), (0, 0, 1, - 1/2). Applying the Gram-

Schmidt process, we obtain

E1 =
2

7^ (i, o,o,^i)

E3 =

=

\(3V)m'\6) '^(mr^J

E:

(30)1

(1094)1/2

49. Find the orthogonal projection of (3, 1, 2) into the kernel of

T: R3^R:

T(x, y, z) = x + 2y + z

Now the kernel of T is spanned by Ft = (2, - 1, 0), F2 = (0, - 1, 2).
Applying the Gram-Schmidt process, we obtain the orthonormal basis

Ei = (l)1/2(2, - 1, 0) E2 = (fWj, -1, 1)

Thus the orthogonal projection of (3, 1, 2) into this plane is

(l)1/25(l)1/2(2, -1,0) + (f)i/2l(f)^(_i _

|, 1} =m, _az f)
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50. Find the point on the line

L: x + y z = 0

3y + z = 0

which is closest to (7, 1,0). L is the linear span of the vector

( 4, -1,3). Thus the orthogonal projection of (7, 1,0) on this

line (the closest point) is

(7 1 0)
(-*. -L3)\ (-4,-1,3)^27^ ' ' J'

(26)1'2 / (26)1'2 26
l ' ' '

EXERCISES

61. Which of the following sets are open; closed; or neither.

(a) {xeR:2< |x-5|<13}.

(b) {xeR:0<x<4}.

(c) {xeR:x>32}.

(d) {X6fi":<x,x>=4}.

(e) {x6A3:<x,(0,2,l))=0}.

(f) {xe#3:2<||x-(3,0,3)||<14}.

(g) {xeR":x1>0,...,x">0}.

(h) The set of integers (considered as a subset of R).

(i) {xeR": 2*''<)
1=1

(j) {xeR-. |>'a'^l}.
(k) {xe/?":2(^)3<2^')2}.

62. Find the point on the plane

x + 3y + 2z = 4

closest to the point (1, 0, 1).

63. Find the point on the line

x + 7v + z = 2

x z = 0

closest to the point (7, 1, 0).

64. Find an orthonormal basis for the linear span of

(a) Vl = (0, 2, 2), y2 = (1, 0, 2), t, = (1, 2, 4).

(b) Vi
= (0, 1, 0, 1), v2 = (1, 0, 1, 0), v3 = (1, 1, 2, 3).

(c) v, = (0, 3, 0, 0, 0), y2 = (0, 6, 0, 3, 0), y3 = (0, 0, 2,
-

1, 1).

(d) vi = (1, 2, 3, 4), y2 = (4, 3, 2, 1), v3 = (2, 1, 4, 3).
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65. Find orthonormal bases for the linear span and kernel of these

transformations on R*:

(a) /8 6 1 0\ 0>)'8 6 1 0

1 2 0 2

0 3 3 0

7 4 1 -2

1 2 1 2

2 1 2 1

1 1 -1 1

0 1 0 1

PROBLEMS

67. Prove Proposition 32.

68. Show that an orthogonal set of vectors is independent.

69. Give an example of a sequence {U} of open sets such that f)"=i U

is not open.

70. Give an example of a sequence {C} of closed sets such that (J"=i C

is open.

71. Find an orthonormal basis for the linear span of 1, x, x2, x3 in the

vector space C([0, 1]) with the inner product </, gy
= \fg.

In the next four problems V represents a vector space endowed with an

inner product, denoted < , >.

72. Let v, w, x be three points in V such that v x is orthogonal to

w x. Show that the Pythagorean theorem is valid :

\\v-W\\2=\\v-x\\2+\\x-w\\2

73. Let v, w be two vectors in V. Show that the vector in the linear span

of w which is closest to v is

v0 w (1.51)

(You can verify this by minimizing the function f(t) \\v tw\\2 by

calculus.)
74. Prove Schwarz's inequality:

\<v,wy\^\\v\\-\\w\\

for any two vectors in V. (Hint: [|f o II2 => 0 where v0 is given by

(1.50).)
75. Prove the triangle inequality:

ll-x||^||y-w||+||w-x|l

for any three vectors in V (use Schwarz's inequality).
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76. Let V be a vector space with an inner product. Suppose that W

is a subspace of V. Let J_(W) = {v: <u, w> = 0 for all w e IF}. This is

called the orthogonal complement of W. Show that L(W) is a linear

subspace of V and (if F is finite dimensional) that W and 1_(W) together

span V.

11. Let T: R" -* /?m be a linear transformation represented by the matrix

A. Show that the rows of A span (K(T)).
78. Show that a linear transformation is one-to-one on the orthogonal

complement of its kernel.

FURTHER READING

R. E. Johnson, Linear Algebra, Prindle, Weber & Schmidt, Boston, 1968.

This book covers the same material and includes a derivation of the Jordan

canonical form.

K. Hoffman and R. Kunze, Linear Algebra, Prentice-Hall, Englewood

Cliffs, N.J., 1961. This book is more thorough and abstract, and has a full

discussion of canonical forms.

L. Fox, An Introduction to Numerical Linear Algebra, Oxford University

Press, 1965. This is a detailed treatment of computational problems in

matrix theory.
H. K. Nickerson, D. C. Spencer, and N. Steenrod, Advanced Calculus,

Van Nostrand, Princeton, N.J., 1957. This set of notes has a full treatment

of all the abstract linear algebra required in modern analysis.

MISCELLANEOUS PROBLEMS

79. Show that if A' is obtained from A by a sequence of row operations

then these equations have the same solutions: Ax = 0, A'x = 0.

80. Show that every nonempty set of positive integers has a least element.

81. Show that a set with n elements has precisely 2" subsets.

82. Show that the -fold Cartesian product of a set with k elements has

k" elements.

83. Can you interpret the case k = 2in Problem 82 so as to deduce the

assertion of Exercise 3 ?

84. Let A = (a/) be an n x n matrix such that a/ = 0 if i j > r for some

r > 0. Show that A"~r = 0. Show that the same conclusion follows from

the assumption j i>r for some r > 0. Will the hypothesis \i j\ > r do

as well?

85. Let T: R" -> Rm be a linear transformation of rank r. Show that

there are linear transformations S,: Rm-^Rm-', S2: R"-'^Rn such that

(a) Si has rank m r and b e R(T) if and only if Sib = 0.

(b) S2 has rank
-

r and x 6 K(T) if and only if x e R(S2).
86. Suppose that T: R" -> R" and Tk = /. Show that T is invertible.

87. Let S be a subset of R". Show that the linear span [S] of S is the

intersection of all linear subspaces of R" containing S.
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88. Let S, T be subsets of R". Show that

dim([S u r]) < dim([5]) + dim([r]),

and equality holds if and only if [S] n [T] = {0}.

89. Let V and W be subspaces of Rn. Let X be the set of all sums

v + w with v e V, w 6 W. Show that X is a linear subspace of R". The

relationship between X and V and W is indicated by writing X= V+ W. If

in addition V r\ W={0}, then every xeJcan be written in the form

v + w in only one way. In this case, X= V+ W with V n W = 0, we say

that X is the direct sum of V and IF and write X=V@W.

90. Suppose X=V W. Then dim X= dim F+ dim IF.

91. Show that if A: R" -> .R is a linear function, there exists a w e .R" such

that A(v) = <v, w> for all v e /?".

92. If S is a subset of R" define

1(5) = {v e R": <v, s> = 0 for all s e S}.

(a) Show that (S) is a subspace of .R" and that S n _L(S) = {0}.

(b) Show that [S] =(.(S)).

(c) If V is a linear subspace of .R", R" =F J_(F).

93. Suppose that T: V-> Wis a linear transformation and Fis not finite

dimensional. Show that either the rank or the nullity of Tmust be infinite.

94. Let V be an abstract vector space. A bilinear function p on V is a

function of two variables in Vwith these properties:

p(cv, w) = cp(v, w) p(v, cw) = cp(v, w)

p(vi + v2,w) =p(vu w) + p(v2 , w) p(v, Wi + w2) =p(v, Wi) + p(v, w2)

Show that the sum of two bilinear functions is bilinear. In fact, the space

Bv of all bilinear functions is an abstract vector space. If V is finite dimen

sional, what is the dimension of Bv ? (Hint: See the next problem.)

95. Let p be a bilinear function on R". Let

a,;j=piE,,Ej)

Show that/? is completely determined by the matrix (at;j).

96. Let V be an abstract vector space.

(a) Show that the space V* of linear functions on Fis a vector space

under addition and scalar multiplication.

(b) If dim V=d, show that dim V* = d also.

(c) Show that to every A e R"* there isaweff such that A(v) =

<v, w> for all v e Rn. (Recall Problem 91.)

97. Suppose that V is a linear subspace of W. We define the annihilator

of V, denoted ann(F), to be the set of A e W* such that X(v) = 0 if v e V.
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Show that ann(F) is a linear subspace of IF*. If dim W =

n, dim V= d,
show that ann(F) has dimension n d.

98. Let V be a linear subspace of .R", and suppose that T: V->Rm is a

linear transformation. Show that there is a linear transformation 7":

R" -=? J?m defined on all of R" which extends T.

99. The closure of a set S, denoted 5, is the set of all points x such that

every neighborhood of x contains points of S. Find the closure of all the

sets in Problem 61.

1 00. Show that the closure of a set S is the smallest closed set containing S.

101. The boundary of a set S, denoted dS, is the set of all points x such

that every neighborhood of x contains points of both S and the complement
of S. Find the boundary of all the sets in Problem 61.

102. Show that the boundary of a set is a closed set.

103. Show that the boundary of a set S is also the boundary of its com

plement R"
- S. In fact, show that 8S = S n (Rn - S).

104. Let T: V-> W be a linear transformation of a vector space with an

inner product. The adjoint of Tis the transformation T*: W-+ V defined

in this way

<T*(w), vy = <w, Tv> for all v e V

(a) Show that T* is a well-defined linear transformation.

(b) If T: R" -- Rm is represented by the matrix A = (a/), then

T* : Rm^ R" is represented by the matrix A* = (a*j), where a*j = atJ.

(This matrix is called the adjoint or transpose of A.)

(c) Show that R(T*) is complementary to K(T).

(A) In fact, P(T*) = v(T), v(T*) = p(T).
105. A bilinear form pona vector space V is called symmetric if it obeys

the law: p(v, w) =/>(w, v) for all v and w. An inner product is a symmetric

bilinear form and much of the formal manipulations with inner products

remains valid for symmetric bilinear forms. For example, the Gram-

Schmidt process (Proposition 32) gives rise to this fact (see if you can work

the proof of Proposition 32 to give it):

Proposition. Let p be a symmetric bilinear form on V. Suppose Fi, ...,

F is a basis for V. We can find another basis, Eu...,EofV such that the

linear span of Eu...,Ej is the same as that of Fu . . .
, Fj for all j, and

p(E,,Ej) = 0ifi^j.

We shall call such a basis Ei,..., E p-orthogonal.

106. Let/? be a symmetric bilinear form on a vector space V, and suppose

Ei, ..., E is a p-orthogonal basis.

(a) Show that p(v, w) can be computed in terms of this basis as

follows : if v = 2 v'Et ,
w = 2 W'E> >

then

p(p, w) = 2 v'w'p(E, , E,) (1.52)
1=1
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(b) Show that p is an inner product on the linear span of the Et

such that p(E,, E,) >0.

(c) Similarly, p is an inner product on the linear span of the Et

such that p(E, , E,) < 0.

107. Prove this fact: Let p be a symmetric bilinear form on a finite-

dimensional vector space V. There is a basis Eu ...,E , integers r, s such

that r + s <; n and such that if v = 2 v'-Ei ,
then

Xm)=2M!- 2 (f')2 0-53)
fr rlr+s

(Hint: Modify the basis {,} in Problem 106 so that (1.52) becomes (1.53).)
108. The integers r, s of Problem 107 are determined by p alone, and are

independent of the basis. Here is a sketch of how a proof would go.

Suppose Fi, ...,F is another p-orthogonal basis and p is the number of

Ft's such that p(Ft , Ft) > 0. We have to show p
= r. Let W be the linear

span of these F's. Expressing points of W in terms of the basis Ei E

we may consider the transformation T: W->R" given by

TQv'Et)=(v\...,tf)

T is one-to-one on W, for if w e W, and w = 0,

0<p(w,w)=2 ("')2- 2 (')2
1ST rir+i

so we must have

2(')2>o
tsr

on W. Since T is one-to-one, it follows that r ;> p. The inequality p >; r

follows from the same argument with the roles of Eu . . .

, E and FU...,F

interchanged.

109. Let A = (aci) be a symmetric n x n matrix, that is, a,; j = a,; ,

Then A determines a symmetric bilinear form on R" as follows:

PA(y, w)= 2 aiww'w-'
i.j

If P is the matrix corresponding to the change of basis from the standard

basis to that described in Problem 105, then P*AP is diagonal. Verify that
assertion.
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110. Find thep-orthogonal basis and the representation (1 .53) of Problem

107 for the symmetric bilinear forms given by these matrices:

(a) [4 3 0 l\ (b)

111. Describe the sets p(y, v) >0, =0, <0 in R* where p is given by

p(y, y) = (v1)2 + (i;2)2 + (v3)2
-

(v*)2

112. A transformation T: V-> V is called self-adjoint if it is self-

adjoint 7v, w> = <v, 7w> for all v, w e V). Show that if T is a self-

adjoint transformation on R", then

R? =K(T)R(T)

113. Suppose that v, w are eigenvectors of a self-adjoint transformation T

on V with different eigenvalues. Show that <v, w> = 0.

114. If T is a self-adjoint transformation on R", and v0 e Rn is such that

2(V)2 = land

<Ty0, v0> =max{<rv, v>; 2 0>')2 = 1}

then v0 is an eigenvector for T.

115. Use Problems 113 and 114 to prove the Spectral theorem for self-

adjoint operators on R":

Theorem. There is an orthonormal basis Ei, . . .
, E of eigenvectors of T.

T can be computed in terms of this basis by

r(2*'E,) = 2*'c.E,

1 1 6. Find a basis of eigenvectors in R* for the self-adjoint transformations

given by the matrices (a), (b) of Problem 110.

117. Orthonormalize these bases of R*:

(a) (1, 0, 0, 0), (0, 1, 1, 1), (0, 0, 2, 2), (3, 0, 0, 3).

(b) (-1, -1, -1, -D,(0, -1, -1, -1), (0,0, -1, -1),

(0,0,0,-1).

(c) (0, 1, 0, 1), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0).

118. Find the orthogonal projection of R5 onto these spaces:

(a) The span of (0,1,0,0,1).

(b) The span of (1, 1, 0, 0, 0), (1, 0, 1, 0, 0).

(c) The span of (1, 0, 0, 0, 1), (0, 1, 0, 0, 1), (0, 0, 1, 0, 1).

(d) The span of the vectors given in (c) and the vector (0, 0, 0, 1, 1).
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